BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 33497609)

  • 1. In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma.
    Dubrot J; Lane-Reticker SK; Kessler EA; Ayer A; Mishra G; Wolfe CH; Zimmer MD; Du PP; Mahapatra A; Ockerman KM; Davis TGR; Kohnle IC; Pope HW; Allen PM; Olander KE; Iracheta-Vellve A; Doench JG; Haining WN; Yates KB; Manguso RT
    Immunity; 2021 Mar; 54(3):571-585.e6. PubMed ID: 33497609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model.
    Suarez ER; Chang de K; Sun J; Sui J; Freeman GJ; Signoretti S; Zhu Q; Marasco WA
    Oncotarget; 2016 Jun; 7(23):34341-55. PubMed ID: 27145284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural Killer Cells Suppress T Cell-Associated Tumor Immune Evasion.
    Freeman AJ; Vervoort SJ; Ramsbottom KM; Kelly MJ; Michie J; Pijpers L; Johnstone RW; Kearney CJ; Oliaro J
    Cell Rep; 2019 Sep; 28(11):2784-2794.e5. PubMed ID: 31509742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9.
    Abrahimi P; Chang WG; Kluger MS; Qyang Y; Tellides G; Saltzman WM; Pober JS
    Circ Res; 2015 Jul; 117(2):121-8. PubMed ID: 25940550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lentiviral vector encoding ubiquitinated hepatitis B core antigen induces potent cellular immune responses and therapeutic immunity in HBV transgenic mice.
    Dai S; Zhuo M; Song L; Chen X; Yu Y; Zang G; Tang Z
    Immunobiology; 2016 Jul; 221(7):813-21. PubMed ID: 26874581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells.
    Laugel B; Lloyd A; Meermeier EW; Crowther MD; Connor TR; Dolton G; Miles JJ; Burrows SR; Gold MC; Lewinsohn DM; Sewell AK
    J Immunol; 2016 Aug; 197(3):971-82. PubMed ID: 27307560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements in CRISPR screens for the development of cancer immunotherapy strategies.
    Li YR; Lyu Z; Tian Y; Fang Y; Zhu Y; Chen Y; Yang L
    Mol Ther Oncolytics; 2023 Dec; 31():100733. PubMed ID: 37876793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile modular vector system for rapid combinatorial mammalian genetics.
    Albers J; Danzer C; Rechsteiner M; Lehmann H; Brandt LP; Hejhal T; Catalano A; Busenhart P; Gonçalves AF; Brandt S; Bode PK; Bode-Lesniewska B; Wild PJ; Frew IJ
    J Clin Invest; 2015 Apr; 125(4):1603-19. PubMed ID: 25751063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR genome engineering and viral gene delivery: a case of mutual attraction.
    Schmidt F; Grimm D
    Biotechnol J; 2015 Feb; 10(2):258-72. PubMed ID: 25663455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells.
    Bellec J; Bacchetta M; Losa D; Anegon I; Chanson M; Nguyen TH
    Curr Gene Ther; 2015; 15(5):447-59. PubMed ID: 26264708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing.
    Chiou SH; Winters IP; Wang J; Naranjo S; Dudgeon C; Tamburini FB; Brady JJ; Yang D; Grüner BM; Chuang CH; Caswell DR; Zeng H; Chu P; Kim GE; Carpizo DR; Kim SK; Winslow MM
    Genes Dev; 2015 Jul; 29(14):1576-85. PubMed ID: 26178787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virological and preclinical characterization of a dendritic cell targeting, integration-deficient lentiviral vector for cancer immunotherapy.
    Odegard JM; Kelley-Clarke B; Tareen SU; Campbell DJ; Flynn PA; Nicolai CJ; Slough MM; Vin CD; McGowan PJ; Nelson LT; Ter Meulen J; Dubensky TW; Robbins SH
    J Immunother; 2015; 38(2):41-53. PubMed ID: 25658613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of HLA-G for protection of human renal cell-carcinoma cells from immune-mediated lysis: implications for immunotherapies.
    Bukur J; Seliger B
    Semin Cancer Biol; 2003 Oct; 13(5):353-9. PubMed ID: 14708715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel kidney cancer immunotherapy based on the granulocyte-macrophage colony-stimulating factor and carbonic anhydrase IX fusion gene.
    Hernández JM; Bui MH; Han KR; Mukouyama H; Freitas DG; Nguyen D; Caliliw R; Shintaku PI; Paik SH; Tso CL; Figlin RA; Belldegrun AS
    Clin Cancer Res; 2003 May; 9(5):1906-16. PubMed ID: 12738749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lymphocyte therapy of renal cell carcinoma.
    Dillman RO
    Expert Rev Anticancer Ther; 2005 Dec; 5(6):1041-51. PubMed ID: 16336095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens.
    Yim S; Hwang W; Han N; Lee D
    Front Immunol; 2022; 13():884561. PubMed ID: 35651625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy.
    Li Y; Yang C; Liu Z; Du S; Can S; Zhang H; Zhang L; Huang X; Xiao Z; Li X; Fang J; Qin W; Sun C; Wang C; Chen J; Chen H
    Mol Cancer; 2022 Jan; 21(1):2. PubMed ID: 34980132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.
    Moreno AM; Fu X; Zhu J; Katrekar D; Shih YV; Marlett J; Cabotaje J; Tat J; Naughton J; Lisowski L; Varghese S; Zhang K; Mali P
    Mol Ther; 2018 Jul; 26(7):1818-1827. PubMed ID: 29754775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radio frequency ablation combined with interleukin-2 induces an antitumor immune response to renal cell carcinoma in a murine model.
    Kroeze SG; Daenen LG; Nijkamp MW; Roodhart JM; de Gast GC; Bosch JL; Jans JJ
    J Urol; 2012 Aug; 188(2):607-14. PubMed ID: 22704448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.