These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33497630)

  • 41. Pupillary light reflex to light inside the natural blind spot.
    Miyamoto K; Murakami I
    Sci Rep; 2015 Jun; 5():11862. PubMed ID: 26115182
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intrinsically photosensitive retinal ganglion cells.
    Kawasaki A; Kardon RH
    J Neuroophthalmol; 2007 Sep; 27(3):195-204. PubMed ID: 17895821
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex.
    Park JC; McAnany JJ
    J Vis; 2015 Mar; 15(3):. PubMed ID: 25788707
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice.
    Lucas RJ; Hattar S; Takao M; Berson DM; Foster RG; Yau KW
    Science; 2003 Jan; 299(5604):245-7. PubMed ID: 12522249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphological alterations of intrinsically photosensitive retinal ganglion cells after ablation of mouse photoreceptors with selective photocoagulation.
    Wu XS; Wang YC; Liu TT; Wang L; Sun XH; Wang LQ; Weng SJ; Zhong YM
    Exp Eye Res; 2019 Nov; 188():107812. PubMed ID: 31550445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [An assessment of the usefulness of the POLWROCHROM pupillometer to study the pupil light reflex to chromatic stimuli taking into account the intrinsically photosensitive retinal ganglion cells activity].
    Nowak W; Zarowska A; Hachoł A; Pieniazek M; Misiuk-Hojło M
    Klin Oczna; 2013; 115(2):130-4. PubMed ID: 24059029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Light adaptation and the evolution of vertebrate photoreceptors.
    Morshedian A; Fain GL
    J Physiol; 2017 Jul; 595(14):4947-4960. PubMed ID: 28488783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Re-evaluating the Role of Intrinsically Photosensitive Retinal Ganglion Cells: New Roles in Image-Forming Functions.
    Sonoda T; Schmidt TM
    Integr Comp Biol; 2016 Nov; 56(5):834-841. PubMed ID: 27371393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Post-illumination pupil response after blue light: Reliability of optimized melanopsin-based phototransduction assessment.
    van der Meijden WP; te Lindert BH; Bijlenga D; Coppens JE; Gómez-Herrero G; Bruijel J; Kooij JJ; Cajochen C; Bourgin P; Van Someren EJ
    Exp Eye Res; 2015 Oct; 139():73-80. PubMed ID: 26209783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of Age and Refractive Error on the Melanopsin Mediated Post-Illumination Pupil Response (PIPR).
    Adhikari P; Pearson CA; Anderson AM; Zele AJ; Feigl B
    Sci Rep; 2015 Dec; 5():17610. PubMed ID: 26620343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photon capture and signalling by melanopsin retinal ganglion cells.
    Do MT; Kang SH; Xue T; Zhong H; Liao HW; Bergles DE; Yau KW
    Nature; 2009 Jan; 457(7227):281-7. PubMed ID: 19118382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
    Altimus CM; Güler AD; Villa KL; McNeill DS; Legates TA; Hattar S
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19998-20003. PubMed ID: 19060203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells.
    Cui Q; Ren C; Sollars PJ; Pickard GE; So KF
    Neuroscience; 2015 Jan; 284():845-853. PubMed ID: 25446359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex.
    Tsujimura S; Tokuda Y
    Ophthalmic Physiol Opt; 2011 Sep; 31(5):469-79. PubMed ID: 21645019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans.
    Gooley JJ; Ho Mien I; St Hilaire MA; Yeo SC; Chua EC; van Reen E; Hanley CJ; Hull JT; Czeisler CA; Lockley SW
    J Neurosci; 2012 Oct; 32(41):14242-53. PubMed ID: 23055493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional Assessment of Melanopsin-Driven Light Responses in the Mouse: Multielectrode Array Recordings.
    Weng SJ; Renna JM; Chen WY; Yang XL
    Methods Mol Biol; 2018; 1753():289-303. PubMed ID: 29564797
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception.
    Hughes S; Pothecary CA; Jagannath A; Foster RG; Hankins MW; Peirson SN
    Eur J Neurosci; 2012 Jan; 35(1):34-43. PubMed ID: 22211741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Divergent projection patterns of M1 ipRGC subtypes.
    Li JY; Schmidt TM
    J Comp Neurol; 2018 Sep; 526(13):2010-2018. PubMed ID: 29888785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photic Regulation of Circadian Rhythms and Voluntary Ethanol Intake: Role of Melanopsin-expressing Intrinsically Photosensitive Retinal Ganglion Cells.
    Hartmann MC; McCulley WD; Johnson ST; Salisbury CS; Vaidya N; Smith CG; Hattar S; Rosenwasser AM
    J Biol Rhythms; 2021 Apr; 36(2):146-159. PubMed ID: 33357136
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circadian control of the pupillary light responses in an avian model of blindness, the GUCY1* chickens.
    Valdez DJ; Nieto PS; Della Costa NS; Schurrer C; Guido ME
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):730-7. PubMed ID: 25574051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.