BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33497640)

  • 1. Developmental Symbiosis: A Sponge Larva Needs Symbiotic Bacteria to Succeed on the Benthos.
    Hadfield MG
    Curr Biol; 2021 Jan; 31(2):R88-R90. PubMed ID: 33497640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine Biosynthesis by a Bacterial Symbiont Enables Nitric Oxide Production and Facilitates Larval Settlement in the Marine-Sponge Host.
    Song H; Hewitt OH; Degnan SM
    Curr Biol; 2021 Jan; 31(2):433-437.e3. PubMed ID: 33220182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sponge symbiosis is facilitated by adaptive evolution of larval sensory and attachment structures in barnacles.
    Yu MC; Dreyer N; Kolbasov GA; Høeg JT; Chan BKK
    Proc Biol Sci; 2020 May; 287(1927):20200300. PubMed ID: 32396804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From traveler to homebody: Which signaling mechanisms sponge larvae use to become adult sponges?
    Borisenko I; Podgornaya OI; Ereskovsky AV
    Adv Protein Chem Struct Biol; 2019; 116():421-449. PubMed ID: 31036299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions.
    Conaco C; Neveu P; Zhou H; Arcila ML; Degnan SM; Degnan BM; Kosik KS
    BMC Genomics; 2012 May; 13():209. PubMed ID: 22646746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine heatwave conditions drive carryover effects in a temperate sponge microbiome and developmental performance.
    Strano F; Micaroni V; Thomas T; Woods L; Davy SK; Bell JJ
    Proc Biol Sci; 2023 Jun; 290(2000):20222539. PubMed ID: 37282536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in metazoa?
    Uriz MJ; Agell G; Blanquer A; Turon X; Casamayor EO
    Evolution; 2012 Oct; 66(10):2993-9. PubMed ID: 23025593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.
    Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.
    Nakanishi N; Stoupin D; Degnan SM; Degnan BM
    Integr Comp Biol; 2015 Dec; 55(6):1018-27. PubMed ID: 25898842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The marine sponge, Hymeniacidon sinapium, displays allorecognition of siblings during post-larval settling and metamorphosis to juveniles.
    Smith LC
    Dev Comp Immunol; 2024 Aug; 157():105179. PubMed ID: 38614378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological regulation of development: induction of marine invertebrate metamorphosis.
    Jackson D; Leys SP; Hinman VF; Woods R; Lavin MF; Degnan BM
    Int J Dev Biol; 2002; 46(4):679-86. PubMed ID: 12141457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endosymbiotic calcifying bacteria across sponge species and oceans.
    Garate L; Sureda J; Agell G; Uriz MJ
    Sci Rep; 2017 Mar; 7():43674. PubMed ID: 28262822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multipartner Symbiosis across Biological Domains: Looking at the Eukaryotic Associations from a Microbial Perspective.
    Turon M; Uriz MJ; Martin D
    mSystems; 2019 Jun; 4(4):. PubMed ID: 31239394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine sponge microbial association: Towards disclosing unique symbiotic interactions.
    Kiran GS; Sekar S; Ramasamy P; Thinesh T; Hassan S; Lipton AN; Ninawe AS; Selvin J
    Mar Environ Res; 2018 Sep; 140():169-179. PubMed ID: 29935729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metamorphosis of coeloblastula performed by multipotential larval flagellated cells in the calcareous sponge Leucosolenia laxa.
    Amano S; Hori I
    Biol Bull; 2001 Feb; 200(1):20-32. PubMed ID: 11249209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental potential of ciliated cells of ceractinomorph sponge larvae.
    Bergquist PR; Glasgow K
    Exp Biol; 1986; 45(2):111-22. PubMed ID: 3699129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of bacteria on planula-larvae settlement and metamorphosis in the octocoral Rhytisma fulvum fulvum.
    Freire I; Gutner-Hoch E; Muras A; Benayahu Y; Otero A
    PLoS One; 2019; 14(9):e0223214. PubMed ID: 31568517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and function of eukaryotic-like proteins from sponge symbionts.
    Reynolds D; Thomas T
    Mol Ecol; 2016 Oct; 25(20):5242-5253. PubMed ID: 27543954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and behavioural evidence that interdependent photo - and chemosensory systems regulate larval settlement in a marine sponge.
    Say TE; Degnan SM
    Mol Ecol; 2020 Jan; 29(2):247-261. PubMed ID: 31791111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Love at First Taste: Induction of Larval Settlement by Marine Microbes.
    Dobretsov S; Rittschof D
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.