BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 33497718)

  • 1. Subcortical rather than cortical sources of the frequency-following response (FFR) relate to speech-in-noise perception in normal-hearing listeners.
    Bidelman GM; Momtaz S
    Neurosci Lett; 2021 Feb; 746():135664. PubMed ID: 33497718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech.
    Bidelman GM
    Neuroimage; 2018 Jul; 175():56-69. PubMed ID: 29604459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brainstem-cortical functional connectivity for speech is differentially challenged by noise and reverberation.
    Bidelman GM; Davis MK; Pridgen MH
    Hear Res; 2018 Sep; 367():149-160. PubMed ID: 29871826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attention reinforces human corticofugal system to aid speech perception in noise.
    Price CN; Bidelman GM
    Neuroimage; 2021 Jul; 235():118014. PubMed ID: 33794356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults.
    Bidelman GM; Price CN; Shen D; Arnott SR; Alain C
    Hear Res; 2019 Oct; 382():107795. PubMed ID: 31479953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brainstem correlates of concurrent speech identification in adverse listening conditions.
    Yellamsetty A; Bidelman GM
    Brain Res; 2019 Jul; 1714():182-192. PubMed ID: 30796895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR.
    Bidelman GM
    Hear Res; 2015 May; 323():68-80. PubMed ID: 25660195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced brainstem phase-locking in low-level noise reveals stochastic resonance in the frequency-following response (FFR).
    Shukla B; Bidelman GM
    Brain Res; 2021 Nov; 1771():147643. PubMed ID: 34473999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High gamma cortical processing of continuous speech in younger and older listeners.
    Kulasingham JP; Brodbeck C; Presacco A; Kuchinsky SE; Anderson S; Simon JZ
    Neuroimage; 2020 Nov; 222():117291. PubMed ID: 32835821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study.
    Gorina-Careta N; Kurkela JLO; Hämäläinen J; Astikainen P; Escera C
    Neuroimage; 2021 May; 231():117866. PubMed ID: 33592244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional changes in inter- and intra-hemispheric cortical processing underlying degraded speech perception.
    Bidelman GM; Howell M
    Neuroimage; 2016 Jan; 124(Pt A):581-590. PubMed ID: 26386346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brainstem correlates of cochlear nonlinearity measured via the scalp-recorded frequency-following response.
    Bidelman GM; Bhagat S
    Neuroreport; 2020 Jul; 31(10):702-707. PubMed ID: 32453027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possible role of early-stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss.
    Mai G; Howell P
    Hear Res; 2023 Jan; 427():108647. PubMed ID: 36436293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical-brainstem interplay during speech perception in older adults with and without hearing loss.
    Lai J; Alain C; Bidelman GM
    Front Neurosci; 2023; 17():1075368. PubMed ID: 36816123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging effects on the neural representation and perception of consonant transition cues.
    Poe AA; Karawani H; Anderson S
    Hear Res; 2024 Jul; 448():109034. PubMed ID: 38781768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners.
    Zhang X; Gong Q
    Hear Res; 2017 Feb; 344():255-264. PubMed ID: 27956352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory-cognitive interaction in the neural encoding of speech in noise: a review.
    Anderson S; Kraus N
    J Am Acad Audiol; 2010 Oct; 21(9):575-85. PubMed ID: 21241645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.