These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33497828)

  • 1. Postoperative cognitive dysfunction: an acute approach for the development of novel treatments for neuroinflammation.
    Granger KT; Barnett JH
    Drug Discov Today; 2021 May; 26(5):1111-1114. PubMed ID: 33497828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous insulin-like growth factor 1 attenuates sevoflurane anesthesia-induced cognitive dysfunction in aged rats.
    Xie L; Fang Q; Wei X; Zhou L; Wang S
    J Neurophysiol; 2021 Jun; 125(6):2117-2124. PubMed ID: 33949883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the role of astrocytes in postoperative cognitive dysfunction.
    He L; Duan X; Li S; Zhang R; Dai X; Lu M
    Ageing Res Rev; 2024 Mar; 95():102223. PubMed ID: 38325753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Progress on Neuroinflammation-mediated Postoperative Cognitive Dysfunction: An Update.
    Peng W; Lu W; Jiang X; Xiong C; Chai H; Cai L; Lan Z
    Curr Mol Med; 2023; 23(10):1077-1086. PubMed ID: 36411553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual roles of anesthetics in postoperative cognitive dysfunction: Regulation of microglial activation through inflammatory signaling pathways.
    Zhang M; Yin Y
    Front Immunol; 2023; 14():1102312. PubMed ID: 36776829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone Deacetylase Inhibitor MS-275 Alleviates Postoperative Cognitive Dysfunction in Rats by Inhibiting Hippocampal Neuroinflammation.
    Wu Y; Dou J; Wan X; Leng Y; Liu X; Chen L; Shen Q; Zhao B; Meng Q; Hou J
    Neuroscience; 2019 Oct; 417():70-80. PubMed ID: 31430527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction.
    Yang CX; Bao F; Zhong J; Zhang L; Deng LB; Sha Q; Jiang H
    Eur Rev Med Pharmacol Sci; 2020 Oct; 24(19):10194-10202. PubMed ID: 33090427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving From Hypothesis to Treatment.
    Safavynia SA; Goldstein PA
    Front Psychiatry; 2018; 9():752. PubMed ID: 30705643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role and regulatory mechanism of microRNA mediated neuroinflammation in neuronal system diseases.
    Zhang J; Li A; Gu R; Tong Y; Cheng J
    Front Immunol; 2023; 14():1238930. PubMed ID: 37637999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMP-9 inhibition alleviates postoperative cognitive dysfunction by improving glymphatic function via regulating AQP4 polarity.
    Zhu B; Cao A; Chen C; Zhou W; Luo W; Gui Y; Wang Q; Xu Z; Wang J
    Int Immunopharmacol; 2024 Jan; 126():111215. PubMed ID: 38000234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postoperative Cognitive Dysfunction and the Protective Effects of Enriched Environment: A Systematic Review.
    Hua M; Min J
    Neurodegener Dis; 2020; 20(4):113-122. PubMed ID: 33601385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction.
    Yang Y; Liu Y; Zhu J; Song S; Huang Y; Zhang W; Sun Y; Hao J; Yang X; Gao Q; Ma Z; Zhang J; Gu X
    Free Radic Biol Med; 2022 Jan; 178():134-146. PubMed ID: 34875338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postoperative cognitive dysfunction in the aged: the collision of neuroinflammaging with perioperative neuroinflammation.
    Luo A; Yan J; Tang X; Zhao Y; Zhou B; Li S
    Inflammopharmacology; 2019 Feb; 27(1):27-37. PubMed ID: 30607668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inflammation: a bridge between postoperative cognitive dysfunction and Alzheimer's disease.
    Hu Z; Ou Y; Duan K; Jiang X
    Med Hypotheses; 2010 Apr; 74(4):722-4. PubMed ID: 19944539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral Hypoxia: Its Role in Age-Related Chronic and Acute Cognitive Dysfunction.
    Snyder B; Simone SM; Giovannetti T; Floyd TF
    Anesth Analg; 2021 Jun; 132(6):1502-1513. PubMed ID: 33780389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'A picture is worth a thousand words': The use of microscopy for imaging neuroinflammation.
    de Fraga LS; Tassinari ID; Jantsch J; Guedes RP; Bambini-Junior V
    Clin Exp Immunol; 2021 Dec; 206(3):325-345. PubMed ID: 34596237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential mechanism of postoperative cognitive dysfunction in older people.
    Lin X; Chen Y; Zhang P; Chen G; Zhou Y; Yu X
    Exp Gerontol; 2020 Feb; 130():110791. PubMed ID: 31765741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease.
    Pulliam L; Sun B; Mustapic M; Chawla S; Kapogiannis D
    J Neurovirol; 2019 Oct; 25(5):702-709. PubMed ID: 30610738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research progress on the role and regulatory mechanism of pathogenic Th17 cells in neuroinflammation.
    Dai HY; Ji D; Tan C; Sun J; Yao H
    Yi Chuan; 2022 Apr; 44(4):289-299. PubMed ID: 35437237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-181b-5p attenuates early postoperative cognitive dysfunction by suppressing hippocampal neuroinflammation in mice.
    Lu Y; Xu X; Dong R; Sun L; Chen L; Zhang Z; Peng M
    Cytokine; 2019 Aug; 120():41-53. PubMed ID: 31003188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.