These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33497970)

  • 21. Dynamics of the 4D genome during in vivo lineage specification and differentiation.
    Oudelaar AM; Beagrie RA; Gosden M; de Ornellas S; Georgiades E; Kerry J; Hidalgo D; Carrelha J; Shivalingam A; El-Sagheer AH; Telenius JM; Brown T; Buckle VJ; Socolovsky M; Higgs DR; Hughes JR
    Nat Commun; 2020 Jun; 11(1):2722. PubMed ID: 32483172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the existence and functionality of topologically associating domains.
    Beagan JA; Phillips-Cremins JE
    Nat Genet; 2020 Jan; 52(1):8-16. PubMed ID: 31925403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The distributions of protein coding genes within chromatin domains in relation to human disease.
    Muro EM; Ibn-Salem J; Andrade-Navarro MA
    Epigenetics Chromatin; 2019 Dec; 12(1):72. PubMed ID: 31805995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation associated modules reflect 3D genome modularity associated with chromatin activity.
    Zheng L; Wang W
    Nat Commun; 2022 Sep; 13(1):5281. PubMed ID: 36075900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial density of open chromatin: an effective metric for the functional characterization of topologically associated domains.
    Jiang S; Li H; Hong H; Du G; Huang X; Sun Y; Wang J; Tao H; Xu K; Li C; Chen Y; Chen H; Bo X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32987404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D genome evolution and reorganization in the Drosophila melanogaster species group.
    Torosin NS; Anand A; Golla TR; Cao W; Ellison CE
    PLoS Genet; 2020 Dec; 16(12):e1009229. PubMed ID: 33284803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression.
    Ghavi-Helm Y; Jankowski A; Meiers S; Viales RR; Korbel JO; Furlong EEM
    Nat Genet; 2019 Aug; 51(8):1272-1282. PubMed ID: 31308546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional chromatin in disease: What holds us together and what drives us apart?
    Ibrahim DM; Mundlos S
    Curr Opin Cell Biol; 2020 Jun; 64():1-9. PubMed ID: 32036200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA sequence-dependent chromatin architecture and nuclear hubs formation.
    Jabbari K; Chakraborty M; Wiehe T
    Sci Rep; 2019 Oct; 9(1):14646. PubMed ID: 31601866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome organization at different scales: nature, formation and function.
    Serizay J; Ahringer J
    Curr Opin Cell Biol; 2018 Jun; 52():145-153. PubMed ID: 29631108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super enhancers-Functional cores under the 3D genome.
    Zhang J; Yue W; Zhou Y; Liao M; Chen X; Hua J
    Cell Prolif; 2021 Feb; 54(2):e12970. PubMed ID: 33336467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hi-TrAC detects active sub-TADs and reveals internal organizations of super-enhancers.
    Cao Y; Liu S; Cui K; Tang Q; Zhao K
    Nucleic Acids Res; 2023 Jul; 51(12):6172-6189. PubMed ID: 37177993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancer RNA: biogenesis, function, and regulation.
    Ye R; Cao C; Xue Y
    Essays Biochem; 2020 Dec; 64(6):883-894. PubMed ID: 33034351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of CAR Agonist Ligand TCPOBOP on Mouse Liver Chromatin Accessibility.
    Lodato NJ; Rampersaud A; Waxman DJ
    Toxicol Sci; 2018 Jul; 164(1):115-128. PubMed ID: 29617930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-range gene regulation in hormone-dependent cancer.
    Tettey TT; Rinaldi L; Hager GL
    Nat Rev Cancer; 2023 Oct; 23(10):657-672. PubMed ID: 37537310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains.
    Yeo SJ; Ying C; Fullwood MJ; Tergaonkar V
    Trends Genet; 2023 Mar; 39(3):217-232. PubMed ID: 36642680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data.
    Pliner HA; Packer JS; McFaline-Figueroa JL; Cusanovich DA; Daza RM; Aghamirzaie D; Srivatsan S; Qiu X; Jackson D; Minkina A; Adey AC; Steemers FJ; Shendure J; Trapnell C
    Mol Cell; 2018 Sep; 71(5):858-871.e8. PubMed ID: 30078726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In the loop: long range chromatin interactions and gene regulation.
    Dean A
    Brief Funct Genomics; 2011 Jan; 10(1):3-10. PubMed ID: 21258045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.