These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33498313)

  • 21. Track-Before-Detect Framework-Based Vehicle Monocular Vision Sensors.
    Gonzalez H; Rodriguez S; Elouardi A
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30700009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot.
    Yang W; Bajenov A; Shen Y
    Robotics Biomim; 2017; 4(1):16. PubMed ID: 29170730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs.
    Torres-Moreno JL; Blanco-Claraco JL; Giménez-Fernández A; Sanjurjo E; Naya MÁ
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IMU-Based Virtual Road Profile Sensor for Vehicle Localization.
    Gim J; Ahn C
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30301249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Railway track surface faults dataset.
    Arain A; Mehran S; Shaikh MZ; Kumar D; Chowdhry BS; Hussain T
    Data Brief; 2024 Feb; 52():110050. PubMed ID: 38299101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Millimeter Scale Track Irregularity Surveying Based on ZUPT-Aided INS with Sub-Decimeter Scale Landmarks.
    Jiang Q; Wu W; Li Y; Jiang M
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28895902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic-Measuring Square in the Measurement of the Circular Curve of Rail Transport Tracks.
    Kampczyk A
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31968551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movement artefact removal from NIRS signal using multi-channel IMU data.
    Siddiquee MR; Marquez JS; Atri R; Ramon R; Perry Mayrand R; Bai O
    Biomed Eng Online; 2018 Sep; 17(1):120. PubMed ID: 30200984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and manufacture of a scaled railway track with mechanically variable geometry.
    Chamorro R; Aceituno JF; Urda P; Del Pozo E; Escalona JL
    Sci Rep; 2022 May; 12(1):8665. PubMed ID: 35606467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RailEnV-PASMVS: A perfectly accurate, synthetic, path-traced dataset featuring a virtual railway environment for multi-view stereopsis training and reconstruction applications.
    Broekman A; Gräbe PJ
    Data Brief; 2021 Oct; 38():107411. PubMed ID: 34621935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Method for Determining the Directional Angle of a Railway Route Based on Field Measurements.
    Koc W
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of 3D Knee Joint Angles during Cycling Using Inertial Sensors: Accuracy of a Novel Sensor-to-Segment Calibration Procedure Based on Pedaling Motion.
    Cordillet S; Bideau N; Bideau B; Nicolas G
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance Assessment of an Ultra Low-Cost Inertial Measurement Unit for Ground Vehicle Navigation.
    Gonzalez R; Dabove P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distributed observers for pose estimation in the presence of inertial sensory soft faults.
    Sadeghzadeh-Nokhodberiz N; Poshtan J; Wagner A; Nordheimer E; Badreddin E
    ISA Trans; 2014 Jul; 53(4):1307-19. PubMed ID: 24852356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of inertial measurement units as a novel method for kinematic gait evaluation in dogs.
    Duerr FM; Pauls A; Kawcak C; Haussler K; Bertocci G; Moorman V; King M
    Vet Comp Orthop Traumatol; 2016 Nov; 29(6):475-483. PubMed ID: 27761576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory.
    Cortesi M; Giovanardi A; Gatta G; Mangia AL; Bartolomei S; Fantozzi S
    J Sports Sci Med; 2019 Sep; 18(3):438-447. PubMed ID: 31427865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation.
    Ilci V; Toth C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repeatability of measuring knee flexion angles with wearable inertial sensors.
    Fennema MC; Bloomfield RA; Lanting BA; Birmingham TB; Teeter MG
    Knee; 2019 Jan; 26(1):97-105. PubMed ID: 30554906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An IMU-to-Body Alignment Method Applied to Human Gait Analysis.
    Vargas-Valencia LS; Elias A; Rocon E; Bastos-Filho T; Frizera A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.