These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 33498418)

  • 41. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible Thermocamouflage Materials in Supersonic Flowfields with Selective Energy Dissipation.
    Lee N; Lim JS; Chang I; Lee D; Cho HH
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43524-43532. PubMed ID: 34472852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material.
    Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S
    Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling.
    Zhu H; Li Q; Tao C; Hong Y; Xu Z; Shen W; Kaur S; Ghosh P; Qiu M
    Nat Commun; 2021 Mar; 12(1):1805. PubMed ID: 33753740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber.
    Chen L; Sun L; Dong H; Mou N; Zhang Y; Li Q; Jiang X; Zhang L
    RSC Adv; 2020 Jan; 10(9):5146-5151. PubMed ID: 35498277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porous Nanostructured Composite Film for Visible-to-Infrared Camouflage with Thermal Management.
    Ding D; He X; Liang S; Wei W; Ding S
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24690-24696. PubMed ID: 35603577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene.
    Krishna A; Kim JM; Leem J; Wang MC; Nam S; Lee J
    Nano Lett; 2019 Aug; 19(8):5086-5092. PubMed ID: 31251631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectrally tunable nanocomposite metamaterials as near-perfect emitters for mid-infrared thermal radiation management.
    Cao J; Liu X; Chang Q; Yang Z; Zhou H; Fan T
    Phys Chem Chem Phys; 2020 Dec; 22(48):28012-28020. PubMed ID: 33300901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multispectral camouflage and radiative cooling using dynamically tunable metasurface.
    Zhou G; Huang J; Li H; Li Y; Jia G; Song N; Xiao J
    Opt Express; 2024 Mar; 32(7):12926-12940. PubMed ID: 38571100
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns.
    Ko JH; Kim DH; Hong SH; Kim SK; Song YM
    iScience; 2023 Jan; 26(1):105780. PubMed ID: 36590160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrawide Spectra Camouflage Coatings from Metallic Flake Powder.
    Fu S; Liang Z; Qian X; Zhang W; Qiu Y; Ling X; Liu Q; Zhang D
    ACS Appl Mater Interfaces; 2024 May; 16(21):27627-27639. PubMed ID: 38766902
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Taming the blackbody with infrared metamaterials as selective thermal emitters.
    Liu X; Tyler T; Starr T; Starr AF; Jokerst NM; Padilla WJ
    Phys Rev Lett; 2011 Jul; 107(4):045901. PubMed ID: 21867022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultra-thin and near-unity selective emitter for efficient cooling.
    Kim DH; Lee GJ; Heo SY; Son S; Kang KM; Lee H; Song YM
    Opt Express; 2021 Sep; 29(20):31364-31375. PubMed ID: 34615230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-adaptive control of infrared emissivity in a solution-processed plasmonic structure.
    Ono M; Takata M; Shirata M; Yoshihiro T; Tani T; Naya M; Saiki T
    Opt Express; 2021 Oct; 29(22):36048-36060. PubMed ID: 34809025
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal-Insulator Transition.
    Tang K; Wang X; Dong K; Li Y; Li J; Sun B; Zhang X; Dames C; Qiu C; Yao J; Wu J
    Adv Mater; 2020 Sep; 32(36):e1907071. PubMed ID: 32700403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling.
    Liu D; Xu Y; Xuan Y
    Appl Opt; 2020 Aug; 59(23):6861-6867. PubMed ID: 32788776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and performance analysis of a mid-infrared broadband thermally tunable metamaterial absorption device based on the phase-change effect.
    Feng T; Gong C; Liang S; Yi Z; Yi Y; Ma C
    Dalton Trans; 2024 May; 53(18):8033-8040. PubMed ID: 38651998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition.
    Kim JH; Jung SM; Shin MW
    Opt Express; 2019 Feb; 27(3):3039-3054. PubMed ID: 30732331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.