BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33498581)

  • 1. Impact of Ambient and Elevated [CO
    Baligar VC; Elson MK; He Z; Li Y; Paiva AQ; Almeida AF; Ahnert D
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33498581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.
    Chandra S; Lata H; Khan IA; Elsohly MA
    Physiol Mol Biol Plants; 2008 Oct; 14(4):299-306. PubMed ID: 23572895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achievable productivities of certain CAM plants: basis for high values compared with C
    Nobel PS
    New Phytol; 1991 Oct; 119(2):183-205. PubMed ID: 33874131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of C
    Sionit N; Patterson DT
    Oecologia; 1984 Dec; 65(1):30-34. PubMed ID: 28312106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency.
    Esmaeili S; Aliniaeifard S; Dianati Daylami S; Karimi S; Shomali A; Didaran F; Telesiński A; Sierka E; Kalaji HM
    Sci Rep; 2022 Jun; 12(1):10002. PubMed ID: 35705667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating short-term light responses of photosynthesis and water use efficiency in sweet sorghum under varying temperature and CO
    Yang XL; Ma XF; Ye ZP; Yang LS; Shi JB; Wang X; Zhou BB; Wang FB; Deng ZF
    Front Plant Sci; 2024; 15():1291630. PubMed ID: 38606074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO
    Haworth M; Killi D; Materassi A; Raschi A; Centritto M
    Front Plant Sci; 2016; 7():1568. PubMed ID: 27826305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Mediated Reduction in Photosynthesis in Closed Greenhouses Can Be Compensated for by CO
    Dannehl D; Kläring HP; Schmidt U
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro growth and single-leaf photosynthetic response of Cymbidium plantlets to super-elevated CO2 under cold cathode fluorescent lamps.
    Norikane A; Takamura T; Morokuma M; Tanaka M
    Plant Cell Rep; 2010 Mar; 29(3):273-83. PubMed ID: 20094885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic and leaf morphological characteristics in Leucaena leucocephala as affected by growth under different neutral shade levels.
    Perry MH; Friend DJ; Yamamoto HY
    Photosynth Res; 1986 Jan; 9(3):305-16. PubMed ID: 24442363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water availability affects seasonal CO
    Pathare VS; Crous KY; Cooke J; Creek D; Ghannoum O; Ellsworth DS
    Glob Chang Biol; 2017 Dec; 23(12):5164-5178. PubMed ID: 28691268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms.
    Liu J; van Iersel MW
    Front Plant Sci; 2021; 12():619987. PubMed ID: 33747002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan.
    Ardö J; Mölder M; El-Tahir BA; Elkhidir HA
    Carbon Balance Manag; 2008 Dec; 3():7. PubMed ID: 19046418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Responses of diurnal variation of flag-leaf photosynthesis and photosynthetic pigment content to elevated atmospheric CO
    Yuan MM; Zhu JG; Liu G; Wang WL
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):167-175. PubMed ID: 29692025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant Factories Are Heating Up: Hunting for the Best Combination of Light Intensity, Air Temperature and Root-Zone Temperature in Lettuce Production.
    Carotti L; Graamans L; Puksic F; Butturini M; Meinen E; Heuvelink E; Stanghellini C
    Front Plant Sci; 2020; 11():592171. PubMed ID: 33584743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and photosynthetic responses of Chinese cabbage (Brassica rapa L. cv. Tokyo Bekana) to continuously elevated carbon dioxide in a simulated Space Station "Veggie" crop-production environment.
    Burgner SE; Nemali K; Massa GD; Wheeler RM; Morrow RC; Mitchell CA
    Life Sci Space Res (Amst); 2020 Nov; 27():83-88. PubMed ID: 34756234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated carbon dioxide influences yield and photosynthetic responses of hydroponically-grown [correction of glown] sweetpotato.
    Mortley D; Hill J; Loretan P; Bonsi C; Hill W; Hileman D; Terse A
    Acta Hortic; 1996 Dec; 440():31-6. PubMed ID: 11541577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability.
    Centritto M; Lucas ME; Jarvis PG
    Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.