These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33498780)

  • 1. Omnidirectional and Broadband Antireflection Effect with Tapered Silicon Nanostructures Fabricated with Low-Cost and Large-Area Capable Nanosphere Lithography.
    Kim S; Jeong GS; Park NY; Choi JY
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33498780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells.
    Cheon SE; Lee HS; Choi J; Jeong AR; Lee TS; Jeong DS; Lee KS; Lee WS; Kim WM; Lee H; Kim I
    Sci Rep; 2017 Aug; 7(1):7336. PubMed ID: 28779077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of periodic silicon nanopillars in a two-dimensional hexagonal array with enhanced control on structural dimension and period.
    Choi JY; Alford TL; Honsberg CB
    Langmuir; 2015 Apr; 31(13):4018-23. PubMed ID: 25781034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-controlled spin-coating method for large-scale area deposition of two-dimensional silica nanosphere assembled layers.
    Choi JY; Alford TL; Honsberg CB
    Langmuir; 2014 May; 30(20):5732-8. PubMed ID: 24785083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique.
    Lin HH; Chen WH; Hong FC
    J Vac Sci Technol B Nanotechnol Microelectron; 2013 May; 31(3):31401. PubMed ID: 23847751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection.
    Wang HP; Lai KY; Lin YR; Lin CA; He JH
    Langmuir; 2010 Aug; 26(15):12855-8. PubMed ID: 20666420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized antireflective silicon nanostructure arrays using nanosphere lithography.
    Lee D; Bae J; Hong S; Yang H; Kim YB
    Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly-ordered silicon inverted nanocone arrays with broadband light antireflectance.
    Zhang D; Ren W; Zhu Z; Zhang H; Liu B; Shi W; Qin X; Cheng C
    Nanoscale Res Lett; 2015 Dec; 10():9. PubMed ID: 25635178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting.
    Wang HP; Tsai KT; Lai KY; Wei TC; Wang YL; He JH
    Opt Express; 2012 Jan; 20(1):A94-103. PubMed ID: 22379674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.
    Leem JW; Yu JS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wafer-scale nanostructured black silicon with morphology engineering
    Wu S; Chen Q; Zhang L; Ren H; Zhou H; Hu L; Tan CS
    Nanoscale; 2023 Mar; 15(10):4843-4851. PubMed ID: 36805597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithography-Free Fabrication of Large Area Subwavelength Antireflection Structures Using Thermally Dewetted Pt/Pd Alloy Etch Mask.
    Lee Y; Koh K; Na H; Kim K; Kang JJ; Kim J
    Nanoscale Res Lett; 2009 Jan; 4(4):364-370. PubMed ID: 20596495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings.
    Lin YR; Wang HP; Lin CA; He JH
    J Appl Phys; 2009 Dec; 106(11):114310. PubMed ID: 20057938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties.
    Niu L; Jiang X; Zhao Y; Ma H; Yang J; Cheng K; Du Z
    Nanotechnology; 2016 Aug; 27(31):315601. PubMed ID: 27345038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband antireflection and field emission properties of TiN-coated Si-nanopillars.
    Chang YM; Ravipati S; Kao PH; Shieh J; Ko FH; Juang JY
    Nanoscale; 2014 Aug; 6(16):9846-51. PubMed ID: 25029029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells.
    Chen TG; Yu P; Tsai YL; Shen CH; Shieh JM; Tsai MA; Kuo HC
    Opt Express; 2012 May; 20(10):A412-7. PubMed ID: 22712090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles.
    Kim JB; Yeo CI; Lee YH; Ravindran S; Lee YT
    Nanoscale Res Lett; 2014 Feb; 9(1):54. PubMed ID: 24484636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates.
    Chen JK; Qui JQ; Fan SK; Kuo SW; Ko FH; Chu CW; Chang FC
    J Colloid Interface Sci; 2012 Feb; 367(1):40-8. PubMed ID: 22104277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.