These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

733 related articles for article (PubMed ID: 33498786)

  • 41. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration.
    Chandramohan Y; Jeganathan K; Sivanesan S; Koka P; Amritha TMS; Vimalraj S; Dhanasekaran A
    Life Sci; 2021 Jan; 264():118502. PubMed ID: 33031825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparing three different three-dimensional scaffolds for bone tissue engineering: an in vivo study.
    Rismanchian M; Nosouhian S; Razavi SM; Davoudi A; Sadeghiyan H
    J Contemp Dent Pract; 2015 Jan; 16(1):25-30. PubMed ID: 25876946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomaterial Properties Modulating Bone Regeneration.
    Zhu Y; Goh C; Shrestha A
    Macromol Biosci; 2021 Apr; 21(4):e2000365. PubMed ID: 33615702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration.
    Safari B; Davaran S; Aghanejad A
    Int J Biol Macromol; 2021 Apr; 175():544-557. PubMed ID: 33571587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.
    Montjovent MO; Mark S; Mathieu L; Scaletta C; Scherberich A; Delabarde C; Zambelli PY; Bourban PE; Applegate LA; Pioletti DP
    Bone; 2008 Mar; 42(3):554-64. PubMed ID: 18178142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioglass® 45S5-based composites for bone tissue engineering and functional applications.
    Rizwan M; Hamdi M; Basirun WJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3197-3223. PubMed ID: 28686004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration.
    Annibali S; Cicconetti A; Cristalli MP; Giordano G; Trisi P; Pilloni A; Ottolenghi L
    J Craniofac Surg; 2013 May; 24(3):866-71. PubMed ID: 23714898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An introduction to bone tissue engineering.
    Perić Kačarević Ž; Rider P; Alkildani S; Retnasingh S; Pejakić M; Schnettler R; Gosau M; Smeets R; Jung O; Barbeck M
    Int J Artif Organs; 2020 Feb; 43(2):69-86. PubMed ID: 31544576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering.
    Rao SH; Harini B; Shadamarshan RPK; Balagangadharan K; Selvamurugan N
    Int J Biol Macromol; 2018 Apr; 110():88-96. PubMed ID: 28917940
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthetic octacalcium phosphate: a possible carrier for mesenchymal stem cells in bone regeneration.
    Suzuki O; Anada T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():397-400. PubMed ID: 24109707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration.
    He B; Zhao J; Ou Y; Jiang D
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():728-738. PubMed ID: 29853144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent Developments in Polymer Nanocomposites for Bone Regeneration.
    Abbas M; Alqahtani MS; Alhifzi R
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834724
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biologic augmentation of polymer scaffolds for bone repair.
    Guldberg RE; Oest ME; Dupont K; Peister A; Deutsch E; Kolambkar Y; Mooney D
    J Musculoskelet Neuronal Interact; 2007; 7(4):333-4. PubMed ID: 18094499
    [No Abstract]   [Full Text] [Related]  

  • 57. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model.
    Tomco M; Petrovova E; Giretova M; Almasiova V; Holovska K; Cigankova V; Jenca A; Jencova J; Jenca A; Boldizar M; Balazs K; Medvecky L
    Anat Sci Int; 2017 Sep; 92(4):569-580. PubMed ID: 27530127
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction.
    Lucaciu O; Băciuţ M; Băciuţ G; Câmpian R; Soriţău O; Bran S; Crişan B; Crişan L
    Rom J Morphol Embryol; 2010; 51(1):129-36. PubMed ID: 20191132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomaterial scaffolds for tissue engineering.
    Mallick KK; Cox SC
    Front Biosci (Elite Ed); 2013 Jan; 5(1):341-60. PubMed ID: 23276994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.