These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

733 related articles for article (PubMed ID: 33498786)

  • 61. Impact of Induced Pluripotent Stem Cells in Bone Repair and Regeneration.
    Rana D; Kumar S; Webster TJ; Ramalingam M
    Curr Osteoporos Rep; 2019 Aug; 17(4):226-234. PubMed ID: 31256323
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Polysaccharide-Based Systems for Targeted Stem Cell Differentiation and Bone Regeneration.
    Witzler M; Büchner D; Shoushrah SH; Babczyk P; Baranova J; Witzleben S; Tobiasch E; Schulze M
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31817802
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy.
    Venkataiah VS; Yahata Y; Kitagawa A; Inagaki M; Kakiuchi Y; Nakano M; Suzuki S; Handa K; Saito M
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685667
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synchrotron radiation techniques boost the research in bone tissue engineering.
    Mastrogiacomo M; Campi G; Cancedda R; Cedola A
    Acta Biomater; 2019 Apr; 89():33-46. PubMed ID: 30880235
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent trends in bone tissue engineering: a review of materials, methods, and structures.
    Moghaddam A; Bahrami M; Mirzadeh M; Khatami M; Simorgh S; Chimehrad M; Kruppke B; Bagher Z; Mehrabani D; Khonakdar HA
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38636500
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration.
    Masehi-Lano JJ; Chung EJ
    Methods Mol Biol; 2018; 1758():1-10. PubMed ID: 29679318
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Applications of Scaffolds in Tissue Engineering: Current Utilization and Future Prospective.
    Yadav S; Khan J; Yadav A
    Curr Gene Ther; 2024; 24(2):94-109. PubMed ID: 37921144
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biomaterials and Gene Therapy: A Smart Combination for MSC Musculoskeletal Engineering.
    Mesure B; Menu P; Venkatesan JK; Cucchiarini M; Velot É
    Curr Stem Cell Res Ther; 2019; 14(4):337-343. PubMed ID: 30516113
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.
    Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y
    Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Demineralized bone matrix-based microcarrier scaffold favors vascularized large bone regeneration in vivo in a rat model.
    Li Q; Zhang W; Zhou G; Cao Y; Liu W; Zhang ZY
    J Biomater Appl; 2018 Aug; 33(2):182-195. PubMed ID: 29950157
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling.
    Sheehy EJ; Lemoine M; Clarke D; Gonzalez Vazquez A; O'Brien FJ
    Mar Drugs; 2020 Jan; 18(2):. PubMed ID: 31979233
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Existing and Novel Biomaterials for Bone Tissue Engineering.
    Dec P; Modrzejewski A; Pawlik A
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613972
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bioactive Molecule-incorporated Polymeric Electrospun Fibers for Bone Tissue Engineering.
    Purushothaman AE; Abhinandan R; Adithya SP; Sidharthan DS; Balagangadharan K; Selvamurugan N
    Curr Stem Cell Res Ther; 2023; 18(4):470-486. PubMed ID: 35431001
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies.
    Alghazali KM; Nima ZA; Hamzah RN; Dhar MS; Anderson DE; Biris AS
    Drug Metab Rev; 2015; 47(4):431-54. PubMed ID: 26651522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.