These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33498847)

  • 1. Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes.
    Lee N; Kim YT; Lee J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Conversion of Lignin into Valuable Chemicals: Full Utilization of Aromatic Nuclei and Side Chains.
    Zhang B; Meng Q; Liu H; Han B
    Acc Chem Res; 2023 Dec; 56(24):3558-3571. PubMed ID: 38029298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose.
    Socha AM; Parthasarathi R; Shi J; Pattathil S; Whyte D; Bergeron M; George A; Tran K; Stavila V; Venkatachalam S; Hahn MG; Simmons BA; Singh S
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3587-95. PubMed ID: 25136131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts.
    Lu H; Yadav V; Bilal M; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 2):132574. PubMed ID: 34656619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.
    Kawaguchi H; Hasunuma T; Ogino C; Kondo A
    Curr Opin Biotechnol; 2016 Dec; 42():30-39. PubMed ID: 26970511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment.
    Varanasi P; Singh P; Auer M; Adams PD; Simmons BA; Singh S
    Biotechnol Biofuels; 2013 Jan; 6(1):14. PubMed ID: 23356589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Lignocellulose-Based Monomers and Their Polymerization.
    Pei F; Liu L; Zhu H; Guo H
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in lignocellulosic biomass white biotechnology for bioplastics.
    Kawaguchi H; Takada K; Elkasaby T; Pangestu R; Toyoshima M; Kahar P; Ogino C; Kaneko T; Kondo A
    Bioresour Technol; 2022 Jan; 344(Pt B):126165. PubMed ID: 34695585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective.
    Upton BM; Kasko AM
    Chem Rev; 2016 Feb; 116(4):2275-306. PubMed ID: 26654678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renewable Schiff-Base Ionic Liquids for Lignocellulosic Biomass Pretreatment.
    Choudhary H; Pidatala VR; Mohan M; Simmons BA; Gladden JM; Singh S
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass.
    Zhang J; Wang Y; Du X; Qu Y
    Bioresour Technol; 2020 May; 303():122846. PubMed ID: 32032935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives.
    Sohn YJ; Son J; Lim HJ; Lim SH; Park SJ
    Bioresour Technol; 2022 Sep; 360():127575. PubMed ID: 35792330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae.
    Jayakody LN; Jin YS
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2675-2692. PubMed ID: 33743026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards efficient enzymatic saccharification of pretreated lignocellulose: Enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies.
    Zhai R; Hu J; Jin M
    Biotechnol Adv; 2022 Dec; 61():108044. PubMed ID: 36152893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Value Chemicals from Electrocatalytic Depolymerization of Lignin: Challenges and Opportunities.
    Ayub R; Raheel A
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development.
    Sivagurunathan P; Raj T; Mohanta CS; Semwal S; Satlewal A; Gupta RP; Puri SK; Ramakumar SSV; Kumar R
    Chemosphere; 2021 Apr; 268():129326. PubMed ID: 33360003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin.
    Talebi Amiri M; Dick GR; Questell-Santiago YM; Luterbacher JS
    Nat Protoc; 2019 Mar; 14(3):921-954. PubMed ID: 30778206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.