These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 33499083)

  • 21. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β.
    Lazarova M; Steinle A
    Front Immunol; 2019; 10():2689. PubMed ID: 31803194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local Activation of p53 in the Tumor Microenvironment Overcomes Immune Suppression and Enhances Antitumor Immunity.
    Guo G; Yu M; Xiao W; Celis E; Cui Y
    Cancer Res; 2017 May; 77(9):2292-2305. PubMed ID: 28280037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy.
    Ahmadi A; Najafi M; Farhood B; Mortezaee K
    J Cell Physiol; 2019 Aug; 234(8):12173-12187. PubMed ID: 30537043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.
    Phuengkham H; Ren L; Shin IW; Lim YT
    Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesenchymal Stromal Cells Derived from Normal Cervix and Cervical Cancer Tumors Increase CD73 Expression in Cervical Cancer Cells Through TGF-β1 Production.
    Ávila-Ibarra LR; Mora-García ML; García-Rocha R; Hernández-Montes J; Weiss-Steider B; Montesinos JJ; Lizano Soberon M; García-López P; López CAD; Torres-Pineda DB; Chacón-Salinas R; Vallejo-Castillo L; Pérez-Tapia SM; Monroy-García A
    Stem Cells Dev; 2019 Apr; 28(7):477-488. PubMed ID: 30696359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy.
    Riera-Domingo C; Audigé A; Granja S; Cheng WC; Ho PC; Baltazar F; Stockmann C; Mazzone M
    Physiol Rev; 2020 Jan; 100(1):1-102. PubMed ID: 31414610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target.
    Ocaña MC; Martínez-Poveda B; Quesada AR; Medina MÁ
    Med Res Rev; 2019 Jan; 39(1):70-113. PubMed ID: 29785785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Immunosuppressive Environment in Tumors].
    Sakai C; Nishikawa H
    Gan To Kagaku Ryoho; 2018 Feb; 45(2):222-226. PubMed ID: 29483409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic Cancer-Macrophage Crosstalk in the Tumor Microenvironment.
    de Goede KE; Driessen AJM; Van den Bossche J
    Biology (Basel); 2020 Nov; 9(11):. PubMed ID: 33171762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment.
    Hameed S; Bhattarai P; Dai Z
    Sci China Life Sci; 2018 Apr; 61(4):380-391. PubMed ID: 29607461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sculpting tumor microenvironment with immune system: from immunometabolism to immunoediting.
    Yu YR; Ho PC
    Clin Exp Immunol; 2019 Aug; 197(2):153-160. PubMed ID: 30873592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Filling the Tank: Keeping Antitumor T Cells Metabolically Fit for the Long Haul.
    Delgoffe GM
    Cancer Immunol Res; 2016 Dec; 4(12):1001-1006. PubMed ID: 27908931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment.
    Zheng Y; Chen Z; Han Y; Han L; Zou X; Zhou B; Hu R; Hao J; Bai S; Xiao H; Li WV; Bueker A; Ma Y; Xie G; Yang J; Chen S; Li H; Cao J; Shen L
    Nat Commun; 2020 Dec; 11(1):6268. PubMed ID: 33293583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Microenvironment of Lung Cancer and Therapeutic Implications.
    Mittal V; El Rayes T; Narula N; McGraw TE; Altorki NK; Barcellos-Hoff MH
    Adv Exp Med Biol; 2016; 890():75-110. PubMed ID: 26703800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic crosstalk in the breast cancer microenvironment.
    Dias AS; Almeida CR; Helguero LA; Duarte IF
    Eur J Cancer; 2019 Nov; 121():154-171. PubMed ID: 31581056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wnt Signaling in Cancer Metabolism and Immunity.
    El-Sahli S; Xie Y; Wang L; Liu S
    Cancers (Basel); 2019 Jun; 11(7):. PubMed ID: 31261718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment.
    Moore-Smith LD; Isayeva T; Lee JH; Frost A; Ponnazhagan S
    Sci Rep; 2017 Aug; 7(1):8678. PubMed ID: 28819116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy.
    Wegiel B; Vuerich M; Daneshmandi S; Seth P
    Front Oncol; 2018; 8():284. PubMed ID: 30151352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of transforming growth factor-beta-mediated immunosuppression in tumor-draining lymph nodes augments antitumor responses by various immunologic cell types.
    Fujita T; Teramoto K; Ozaki Y; Hanaoka J; Tezuka N; Itoh Y; Asai T; Fujino S; Kontani K; Ogasawara K
    Cancer Res; 2009 Jun; 69(12):5142-50. PubMed ID: 19491278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment.
    Verrecchia F; Rédini F
    Front Oncol; 2018; 8():133. PubMed ID: 29761075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.