These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33499302)

  • 1. Properties of Journal Bearing Materials That Determine Their Wear Resistance on the Example of Aluminum-Based Alloys.
    Mironov A; Gershman I; Gershman E; Podrabinnik P; Kuznetsova E; Peretyagin P; Peretyagin N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33499302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.
    Wang S; Ma Z; Liao Z; Song J; Yang K; Liu W
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():123-32. PubMed ID: 26354247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.
    Tkachenko S; Datskevich O; Kulak L; Jacobson S; Engqvist H; Persson C
    J Mech Behav Biomed Mater; 2014 Nov; 39():61-72. PubMed ID: 25105238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.
    Das M; Bhattacharya K; Dittrick SA; Mandal C; Balla VK; Sampath Kumar TS; Bandyopadhyay A; Manna I
    J Mech Behav Biomed Mater; 2014 Jan; 29():259-71. PubMed ID: 24121827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribotechnical Properties of Sintered Antifriction Aluminum-Based Composite under Dry Friction against Steel.
    Rusin NM; Skorentsev AL; Krinitcyn MG; Dmitriev AI
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.
    Marin E; Offoiach R; Lanzutti A; Regis M; Fusi S; Fedrizzi L
    Biomed Mater Eng; 2014; 24(1):581-92. PubMed ID: 24211942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bearing Aluminum-Based Alloys: Microstructure, Mechanical Characterizations, and Experiment-Based Modeling Approach.
    Mosleh AO; Kotova EG; Kotov AD; Gershman IS; Mironov AE
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.
    Hua N; Chen W; Zhang L; Li G; Liao Z; Lin Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1154-1165. PubMed ID: 28482481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Copper Content on the Mechanical and Tribological Properties of Hypo-, Hyper- and Eutectoid Ti-Cu Alloys.
    Xu Y; Jiang J; Yang Z; Zhao Q; Chen Y; Zhao Y
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32756320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of lubricating conditions on the two-body wear behavior and hardness of titanium alloys for biomedical applications.
    Yilmaz EÇ
    Comput Methods Biomech Biomed Engin; 2020 Dec; 23(16):1377-1386. PubMed ID: 32772856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications.
    Bahl S; Das S; Suwas S; Chatterjee K
    J Mech Behav Biomed Mater; 2018 Feb; 78():124-133. PubMed ID: 29156291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data analysis for investigating the tribological behaviors of aluminum-silicon alloys.
    Azadi M; Azadi M
    Data Brief; 2022 Jun; 42():108260. PubMed ID: 35599821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribological Properties of High-Entropy Alloys under Dry Conditions for a Wide Temperature Range-A Review.
    Kasar AK; Scalaro K; Menezes PL
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys.
    Goldberg JR; Gilbert JL
    Biomaterials; 2004 Feb; 25(5):851-64. PubMed ID: 14609674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribological Properties of Mo-Si-B Alloys Doped with La
    Li W; Ai T; Dong H; Zhang G
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wear resistance of cast dental Ti-Fe alloys.
    Yamaguchi H; Takahashi M; Sasaki K; Takada Y
    Dent Mater J; 2021 Jan; 40(1):68-73. PubMed ID: 32848102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribological behavior study on Ti-Nb-Sn/hydroxyapatite composites in simulated body fluid solution.
    Chen Y; Wang X; Xu L; Liu Z; Kee do W
    J Mech Behav Biomed Mater; 2012 Jun; 10():97-107. PubMed ID: 22520422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants.
    Wang C; Zhang G; Li Z; Zeng X; Xu Y; Zhao S; Hu H; Zhang Y; Ren T
    J Mech Behav Biomed Mater; 2019 Feb; 90():460-471. PubMed ID: 30448560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling wear of cast Ti alloys.
    Chan KS; Koike M; Okabe T
    Acta Biomater; 2007 May; 3(3):383-9. PubMed ID: 17224314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.
    Tan L; Wang Q; Lin X; Wan P; Zhang G; Zhang Q; Yang K
    Acta Biomater; 2014 May; 10(5):2333-40. PubMed ID: 24361529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.