These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33499461)

  • 1. Vertebral Level-dependent Kinematics of Female and Male Necks Under G+x Loading.
    Yoganandan N; Baisden JL; John J; Saravana Kumar G; Banerjee A; Choi H
    Mil Med; 2021 Jan; 186(Suppl 1):619-624. PubMed ID: 33499461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rear-Impact Neck Whiplash: Role of Head Inertial Properties and Spine Morphological Variations on Segmental Rotations.
    John JD; Saravana Kumar G; Yoganandan N
    J Biomech Eng; 2019 Nov; 141(11):. PubMed ID: 31053837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normalized vertebral-level specific range of motion corridors for female spines in rear impact.
    Yoganandan N; Purushothaman Y; Humm J
    Traffic Inj Prev; 2021; 22(sup1):S137-S140. PubMed ID: 34699297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of morphological variations on cervical spine segmental responses from inertial loading.
    John JD; Yoganandan N; Arun MWJ; Saravana Kumar G
    Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neck Vertebral Level-specific Forces and Moments Under G-x Accelerative Loading.
    Purushothaman Y; Humm J; Jebaseelan D; Yoganandan N
    Mil Med; 2021 Jan; 186(Suppl 1):625-631. PubMed ID: 33499473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical analyses of whiplash injuries using an experimental model.
    Yoganandan N; Pintar FA; Cusick JF
    Accid Anal Prev; 2002 Sep; 34(5):663-71. PubMed ID: 12214961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cervical spine morphology and ligament property variations: A finite element study of their influence on sagittal bending characteristics.
    John JD; Saravana Kumar G; Yoganandan N
    J Biomech; 2019 Mar; 85():18-26. PubMed ID: 30704760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whiplash syndrome: kinematic factors influencing pain patterns.
    Cusick JF; Pintar FA; Yoganandan N
    Spine (Phila Pa 1976); 2001 Jun; 26(11):1252-8. PubMed ID: 11389392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension.
    Mao H; Driscoll SJ; Li JS; Li G; Wood KB; Cha TD
    Spine J; 2016 Apr; 16(4):540-6. PubMed ID: 26681352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subaxial Cervical Spine Motion With Different Sizes of Head-supported Mass Under Accelerative Forces.
    Choi H; Purushothaman Y; Gupta B; Banerjee A; Yoganandan N
    Mil Med; 2023 Nov; 188(Suppl 6):458-465. PubMed ID: 37948251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests.
    Meyer F; Humm J; Purushothaman Y; Willinger R; Pintar FA; Yoganandan N
    J Mech Behav Biomed Mater; 2019 Feb; 90():681-688. PubMed ID: 30529569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neck kinematics in rear-end impacts.
    Yang KH; King AI
    Pain Res Manag; 2003; 8(2):79-85. PubMed ID: 12879138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis.
    Ishii T; Mukai Y; Hosono N; Sakaura H; Nakajima Y; Sato Y; Sugamoto K; Yoshikawa H
    Spine (Phila Pa 1976); 2004 Apr; 29(7):E139-44. PubMed ID: 15087810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study.
    Kandziora F; Pflugmacher R; Scholz M; Schnake K; Lucke M; Schröder R; Mittlmeier T
    Spine (Phila Pa 1976); 2001 May; 26(9):1028-37. PubMed ID: 11337621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical motion segment contributions to head motion during flexion\extension, lateral bending, and axial rotation.
    Anderst WJ; Donaldson WF; Lee JY; Kang JD
    Spine J; 2015 Dec; 15(12):2538-43. PubMed ID: 26334229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tension and combined tension-extension structural response and tolerance properties of the human male ligamentous cervical spine.
    Dibb AT; Nightingale RW; Luck JF; Chancey VC; Fronheiser LE; Myers BS
    J Biomech Eng; 2009 Aug; 131(8):081008. PubMed ID: 19604020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [IN VIVO THREE-DIMENSIONAL TRANSIENT MOTION CHARACTERISTICS OF THE SUBAXIAL CERVICAL SPINE IN HEALTHY ADULTS].
    Li H; Xia Q; Bai J; Miao J; Liu J; Wei D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Dec; 29(12):1494-9. PubMed ID: 27044217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal constraint modulates head instantaneous center of rotation and dictates head angular motion.
    Kuo C; Fanton M; Wu L; Camarillo D
    J Biomech; 2018 Jul; 76():220-228. PubMed ID: 29929891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.