These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33499484)

  • 1. Pelvic Injury Risk Curves for the Military Populations From Lateral Impact.
    Yoganandan N; Rooks TF; Chancey VC; Pintar FA; Banerjee A
    Mil Med; 2021 Jan; 186(Suppl 1):424-429. PubMed ID: 33499484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pelvis injury risk curves in side impacts from human cadaver experiments using survival analysis and Brier score metrics.
    Yoganandan N; Humm JR; DeVogel N; Banerjee A; Pintar FA; Somers JT
    Traffic Inj Prev; 2019; 20(sup2):S137-S142. PubMed ID: 31762331
    [No Abstract]   [Full Text] [Related]  

  • 3. Human lumbar spinal column injury criteria from vertical loading at the base: Applications to military environments.
    Yoganandan N; Moore J; DeVogel N; Pintar F; Banerjee A; Baisden J; Zhang JY; Loftis K; Barnes D
    J Mech Behav Biomed Mater; 2020 May; 105():103690. PubMed ID: 32279845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized lower leg injury probability curves from postmortem human subject tests under axial impacts.
    Yoganandan N; Arun MW; Pintar FA; Szabo A
    Traffic Inj Prev; 2014; 15 Suppl 1(0 1):S151-6. PubMed ID: 25307381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a detailed human neck finite element model and injury risk curves under lateral impact.
    Meyer F; Humm J; Yoganandan N; Leszczynski A; Bourdet N; Deck C; Willinger R
    J Mech Behav Biomed Mater; 2021 Apr; 116():104318. PubMed ID: 33516127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower Leg Injury Reference Values and Risk Curves from Survival Analysis for Male and Female Dummies: Meta-analysis of Postmortem Human Subject Tests.
    Yoganandan N; Arun MW; Pintar FA; Banerjee A
    Traffic Inj Prev; 2015; 16 Suppl 1():S100-7. PubMed ID: 26027961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Pelvis Bayesian Injury Probability Curves From Whole Body Lateral Impact Experiments.
    Yoganandan N; DeVogel N; Pintar F; Banerjee A
    J Eng Sci Med Diagn Ther; 2020 Aug; 3(3):031002. PubMed ID: 35832784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical process using Brier Score Metrics for lower leg injury risk curves in vertical impact.
    DeVogel N; Yoganandan N; Banerjee A; Pintar FA
    BMJ Mil Health; 2020 Oct; 166(5):318-323. PubMed ID: 30709924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior Loading.
    Yoganandan N; Chirvi S; Pintar FA; Banerjee A; Voo L
    Stapp Car Crash J; 2018 Nov; 62():271-292. PubMed ID: 30608997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foot-ankle complex injury risk curves using calcaneus bone mineral density data.
    Yoganandan N; Chirvi S; Voo L; DeVogel N; Pintar FA; Banerjee A
    J Mech Behav Biomed Mater; 2017 Aug; 72():246-251. PubMed ID: 28505593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel learning framework (knockoff technique) to evaluate metric ranking algorithms to describe human response to injury.
    Banerjee A; DeVogel N; Pintar FA; Yoganandan N
    Traffic Inj Prev; 2018; 19(sup2):S121-S126. PubMed ID: 30570337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary female cervical spine injury risk curves from PMHS tests.
    Yoganandan N; Chirvi S; Pintar FA; Baisden JL; Banerjee A
    J Mech Behav Biomed Mater; 2018 Jul; 83():143-147. PubMed ID: 29709826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human pelvis injury risk curves from underbody blast impact.
    Yoganandan N; Moore J; Humm JR; Baisden JL; Banerjee A; Pintar FA; Barnes DR; Loftis KL
    BMJ Mil Health; 2023 Oct; 169(5):436-442. PubMed ID: 34711674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deflection-based parametric survival analysis side impact chest injury risk curves AIS 2015.
    Humm JR; Banerjee A; Yoganandan N
    Traffic Inj Prev; 2021; 22(sup1):S44-S48. PubMed ID: 34699292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an injury risk curve for pelvic fracture in vertical loading environments.
    Rooks TF; Chancey VC; Brozoski FT; Salzar RS; Pintar FA; Yoganandan N
    Traffic Inj Prev; 2018; 19(sup2):S178-S181. PubMed ID: 30841808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cervical spine injury biomechanics: Applications for under body blast loadings in military environments.
    Yoganandan N; Stemper BD; Pintar FA; Maiman DJ; McEntire BJ; Chancey VC
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):602-9. PubMed ID: 23796847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions.
    Chirvi S; Pintar F; Yoganandan N; Banerjee A; Schlick M; Curry W; Voo L
    Stapp Car Crash J; 2017 Nov; 61():157-173. PubMed ID: 29394438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of resampling techniques to improve the quality of survival analysis risk curves for human frontal bone fracture.
    DeVogel N; Banerjee A; Yoganandan N
    Clin Biomech (Bristol, Avon); 2019 Apr; 64():28-34. PubMed ID: 29753560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acceleration level on lumbar spine injuries in military populations.
    Yoganandan N; Stemper BD; Baisden JL; Pintar FA; Paskoff GR; Shender BS
    Spine J; 2015 Jun; 15(6):1318-24. PubMed ID: 24374098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.