BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33499600)

  • 1. Binding Peptide-Guided Immobilization of Lipases with Significantly Improved Catalytic Performance Using
    Dong H; Zhang W; Xuan Q; Zhou Y; Zhou S; Huang J; Wang P
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6168-6179. PubMed ID: 33499600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm Polysaccharide Display Platform: A Natural, Renewable, and Biocompatible Material for Improved Lipase Performance.
    Dong H; Zhang W; Wang Y; Liu D; Wang P
    J Agric Food Chem; 2020 Feb; 68(5):1373-1381. PubMed ID: 31927950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
    Botyanszki Z; Tay PK; Nguyen PQ; Nussbaumer MG; Joshi NS
    Biotechnol Bioeng; 2015 Oct; 112(10):2016-24. PubMed ID: 25950512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture and physicochemical characterization of Bacillus biofilm as a potential enzyme immobilization factory.
    Romero CM; Martorell PV; López AG; Peñalver CGN; Chaves S; Mechetti M
    Colloids Surf B Biointerfaces; 2018 Feb; 162():246-255. PubMed ID: 29216511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm-Mediated Immobilization of a Multienzyme Complex for Accelerating Inositol Production from Starch.
    Liu M; Han P; Zhang L; Zhong C; You C
    Bioconjug Chem; 2021 Sep; 32(9):2032-2042. PubMed ID: 34469136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Biocatalytic Activity of Recombinant Lipase Immobilized on Gold Nanoparticles.
    El-Aziz AMA; Shaker MA; Shaaban MI
    Curr Pharm Biotechnol; 2019; 20(6):497-505. PubMed ID: 31038060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ immobilized lipase on the surface of intracellular polyhydroxybutyrate granules: preparation, characterization, and its promising use for the synthesis of fatty acid alkyl esters.
    Yang TH; Kwon MA; Lee JY; Choi JE; Oh JY; Song JK
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1553-64. PubMed ID: 26378013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance.
    Suo H; Xu L; Xue Y; Qiu X; Huang H; Hu Y
    Carbohydr Polym; 2020 Apr; 234():115914. PubMed ID: 32070532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme.
    Tang W; Chen C; Sun W; Wang P; Wei D
    Int J Biol Macromol; 2019 May; 128():814-824. PubMed ID: 30708009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.
    Aggarwal V; Pundir CS
    Methods Enzymol; 2016; 571():197-223. PubMed ID: 27112401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Whole-Process Visible Strategy for the Preparation of Rhizomucor miehei Lipase with Escherichia coli Secretion Expression System and the Immobilization.
    Yang M; Su X; Yang J; Lu Z; Zhou J; Wang F; Liu Y; Ma L; Zhai C
    Microb Cell Fact; 2024 May; 23(1):155. PubMed ID: 38802857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications.
    Bilal M; Iqbal HMN
    Int J Biol Macromol; 2021 Jan; 166():818-838. PubMed ID: 33144258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced catalytic activity of lipase encapsulated in PCL nanofibers.
    Song J; Kahveci D; Chen M; Guo Z; Xie E; Xu X; Besenbacher F; Dong M
    Langmuir; 2012 Apr; 28(14):6157-62. PubMed ID: 22397625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Lipase Immobilization Mode on Ethyl Acetate Hydrolysis in a Continuous Solid-Gas Biocatalytic Membrane Reactor.
    Vitola G; Mazzei R; Poerio T; Barbieri G; Fontananova E; Büning D; Ulbricht M; Giorno L
    Bioconjug Chem; 2019 Aug; 30(8):2238-2246. PubMed ID: 31310713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases.
    Silva MVC; Aguiar LG; de Castro HF; Freitas L
    World J Microbiol Biotechnol; 2018 Nov; 34(11):169. PubMed ID: 30406564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis.
    Romero CM; Spuches FC; Morales AH; Perotti NI; Navarro MC; Gómez MI
    Colloids Surf B Biointerfaces; 2018 Dec; 172():699-707. PubMed ID: 30245295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.
    Cui J; Zhao Y; Liu R; Zhong C; Jia S
    Sci Rep; 2016 Jun; 6():27928. PubMed ID: 27297609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on the important aspects of lipase immobilization on nanomaterials.
    Shuai W; Das RK; Naghdi M; Brar SK; Verma M
    Biotechnol Appl Biochem; 2017 Jul; 64(4):496-508. PubMed ID: 27277552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable biofilm-based materials from engineered curli nanofibres.
    Nguyen PQ; Botyanszki Z; Tay PK; Joshi NS
    Nat Commun; 2014 Sep; 5():4945. PubMed ID: 25229329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved expression and immobilization of Geobacillus thermoleovorans CCR11 thermostable recombinant lipase.
    Badillo-Zeferino GL; Ruiz-López II; Oliart-Ros R; Sánchez-Otero MG
    Biotechnol Appl Biochem; 2017 Jan; 64(1):62-69. PubMed ID: 26339949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.