BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33499625)

  • 1. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies.
    Mandal A; Ziegler LD
    J Chem Phys; 2021 Nov; 155(19):194701. PubMed ID: 34800946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide.
    Dovbeshko G; Fesenko O; Dementjev A; Karpicz R; Fedorov V; Posudievsky OY
    Nanoscale Res Lett; 2014; 9(1):263. PubMed ID: 24948887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity.
    Zong C; Premasiri R; Lin H; Huang Y; Zhang C; Yang C; Ren B; Ziegler LD; Cheng JX
    Nat Commun; 2019 Nov; 10(1):5318. PubMed ID: 31754221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
    McAnally MO; McMahon JM; Van Duyne RP; Schatz GC
    J Chem Phys; 2016 Sep; 145(9):094106. PubMed ID: 27608988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering.
    Wang J; Zhang J; Tian Y; Fan C; Mu K; Chen S; Ding P; Liang E
    Opt Express; 2017 Jan; 25(1):497-507. PubMed ID: 28085843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas.
    Abedin S; Li Y; Sifat AA; Roy K; Potma EO
    Nano Lett; 2022 Aug; 22(16):6685-6691. PubMed ID: 35960899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the spectral and temporal contributions from the resonant and nonresonant response to femtosecond coherent anti-Stokes Raman scattering.
    Compton R; Filin A; Romanov DA; Levis RJ
    J Chem Phys; 2008 Apr; 128(15):154517. PubMed ID: 18433245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface and coherent contributions of plasmon fields to ultraviolet tip-enhanced coherent anti-Stokes Raman scattering.
    Feng Y; Gao M; Wang Y; Yang Z; Meng L
    Nanotechnology; 2020 Sep; 31(39):395204. PubMed ID: 32541105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene.
    Fesenko O; Dovbeshko G; Dementjev A; Karpicz R; Kaplas T; Svirko Y
    Nanoscale Res Lett; 2015; 10():163. PubMed ID: 25897307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-plasmon resonances enhanced two-photon coherent anti-Stokes Raman scattering by nanorods.
    Wang Y; Zhang T; Li J; Wang C; Li X; Sun M; Fu Z; Zhang Z; Zheng H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118117. PubMed ID: 32066077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance enhanced coherent anti-Stokes Raman scattering.
    Hudson B; Hetherington W; Cramer S; Chabay I; Klauminzer GK
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3798-802. PubMed ID: 1069264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and vibrational surface-enhanced Raman scattering: from atomically defined Au(111) and (100) to roughened Au.
    Inagaki M; Isogai T; Motobayashi K; Lin KQ; Ren B; Ikeda K
    Chem Sci; 2020 Aug; 11(36):9807-9817. PubMed ID: 34094241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy.
    Ghahremani M; Habil MK; Zapata-Rodriguez CJ
    Sci Rep; 2021 May; 11(1):10639. PubMed ID: 34017020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene.
    Virga A; Ferrante C; Batignani G; De Fazio D; Nunn ADG; Ferrari AC; Cerullo G; Scopigno T
    Nat Commun; 2019 Aug; 10(1):3658. PubMed ID: 31413256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectroscopy and imaging with non-resonant coherent anti-Stokes Raman scattering: double stimulated Raman scattering scheme.
    Choi DS; Kim CH; Lee T; Nah S; Rhee H; Cho M
    Opt Express; 2019 Aug; 27(16):23558-23575. PubMed ID: 31510631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.