These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33499625)

  • 1. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Enhanced Nonlinear Raman Processes for Advanced Vibrational Probing.
    Kneipp J; Kneipp K
    ACS Nano; 2024 Aug; 18(32):20851-20860. PubMed ID: 39088308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies.
    Mandal A; Ziegler LD
    J Chem Phys; 2021 Nov; 155(19):194701. PubMed ID: 34800946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide.
    Dovbeshko G; Fesenko O; Dementjev A; Karpicz R; Fedorov V; Posudievsky OY
    Nanoscale Res Lett; 2014; 9(1):263. PubMed ID: 24948887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity.
    Zong C; Premasiri R; Lin H; Huang Y; Zhang C; Yang C; Ren B; Ziegler LD; Cheng JX
    Nat Commun; 2019 Nov; 10(1):5318. PubMed ID: 31754221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
    McAnally MO; McMahon JM; Van Duyne RP; Schatz GC
    J Chem Phys; 2016 Sep; 145(9):094106. PubMed ID: 27608988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering.
    Wang J; Zhang J; Tian Y; Fan C; Mu K; Chen S; Ding P; Liang E
    Opt Express; 2017 Jan; 25(1):497-507. PubMed ID: 28085843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas.
    Abedin S; Li Y; Sifat AA; Roy K; Potma EO
    Nano Lett; 2022 Aug; 22(16):6685-6691. PubMed ID: 35960899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the spectral and temporal contributions from the resonant and nonresonant response to femtosecond coherent anti-Stokes Raman scattering.
    Compton R; Filin A; Romanov DA; Levis RJ
    J Chem Phys; 2008 Apr; 128(15):154517. PubMed ID: 18433245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface and coherent contributions of plasmon fields to ultraviolet tip-enhanced coherent anti-Stokes Raman scattering.
    Feng Y; Gao M; Wang Y; Yang Z; Meng L
    Nanotechnology; 2020 Sep; 31(39):395204. PubMed ID: 32541105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene.
    Fesenko O; Dovbeshko G; Dementjev A; Karpicz R; Kaplas T; Svirko Y
    Nanoscale Res Lett; 2015; 10():163. PubMed ID: 25897307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-plasmon resonances enhanced two-photon coherent anti-Stokes Raman scattering by nanorods.
    Wang Y; Zhang T; Li J; Wang C; Li X; Sun M; Fu Z; Zhang Z; Zheng H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118117. PubMed ID: 32066077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance enhanced coherent anti-Stokes Raman scattering.
    Hudson B; Hetherington W; Cramer S; Chabay I; Klauminzer GK
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3798-802. PubMed ID: 1069264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and vibrational surface-enhanced Raman scattering: from atomically defined Au(111) and (100) to roughened Au.
    Inagaki M; Isogai T; Motobayashi K; Lin KQ; Ren B; Ikeda K
    Chem Sci; 2020 Aug; 11(36):9807-9817. PubMed ID: 34094241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy.
    Ghahremani M; Habil MK; Zapata-Rodriguez CJ
    Sci Rep; 2021 May; 11(1):10639. PubMed ID: 34017020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene.
    Virga A; Ferrante C; Batignani G; De Fazio D; Nunn ADG; Ferrari AC; Cerullo G; Scopigno T
    Nat Commun; 2019 Aug; 10(1):3658. PubMed ID: 31413256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.