BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33499625)

  • 21. Direct Comparison of Hyperspectral Stimulated Raman Scattering and Coherent Anti-Stokes Raman Scattering Microscopy for Chemical Imaging.
    Clark MG; Brasseale KA; Gonzalez GA; Eakins G; Zhang C
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35575496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-Domain Observation of Surface-Enhanced Coherent Raman Scattering with 10
    Kumar P; Kuramochi H; Takeuchi S; Tahara T
    J Phys Chem Lett; 2020 Aug; 11(15):6305-6311. PubMed ID: 32700538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy.
    Konorov SO; Blades MW; Turner RF
    Appl Spectrosc; 2010 Jul; 64(7):767-74. PubMed ID: 20615290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.
    Kearney SP
    Appl Opt; 2014 Oct; 53(28):6579-85. PubMed ID: 25322247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence.
    Orendorff CJ; Gole A; Sau TK; Murphy CJ
    Anal Chem; 2005 May; 77(10):3261-6. PubMed ID: 15889917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonresonant background suppression for coherent anti-Stokes Raman scattering microscopy using a multi-wavelength time-lens source.
    Li B; Charan K; Wang K; Rojo T; Sinefeld D; Xu C
    Opt Express; 2016 Nov; 24(23):26687-26695. PubMed ID: 27857399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface-enhanced coherent anti-Stokes Raman imaging of lipids.
    Fast A; Kenison JP; Syme CD; Potma EO
    Appl Opt; 2016 Aug; 55(22):5994-6000. PubMed ID: 27505381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studying Stimulated Raman Activity in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy by Varying the Excitation Wavelength.
    Buchanan LE; McAnally MO; Gruenke NL; Schatz GC; Van Duyne RP
    J Phys Chem Lett; 2017 Jul; 8(14):3328-3333. PubMed ID: 28679047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering.
    Koo TW; Chan S; Berlin AA
    Opt Lett; 2005 May; 30(9):1024-6. PubMed ID: 15906991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance.
    Zhang Y; Zhen YR; Neumann O; Day JK; Nordlander P; Halas NJ
    Nat Commun; 2014 Jul; 5():4424. PubMed ID: 25020075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects.
    Gachet D; Billard F; Sandeau N; Rigneault H
    Opt Express; 2007 Aug; 15(16):10408-20. PubMed ID: 19547393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarization suppression of the nonresonant background in femtosecond coherent anti-Stokes Raman scattering for flame thermometry at 5 kHz.
    Richardson DR; Bangar D; Lucht RP
    Opt Express; 2012 Sep; 20(19):21495-504. PubMed ID: 23037269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study.
    Crampton KT; Fast A; Potma EO; Apkarian VA
    Nano Lett; 2018 Sep; 18(9):5791-5796. PubMed ID: 30064221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering.
    Cleff C; Gasecka A; Ferrand P; Rigneault H; Brasselet S; Duboisset J
    Nat Commun; 2016 May; 7():11562. PubMed ID: 27189667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Efficient Switching-Off of Coherent Anti-Stokes Raman Scattering via Double Stimulated Raman Scattering Processes of Heteromolecular Vibrational Modes.
    Lim S; Choi DS; Rhee H; Cho M
    J Phys Chem B; 2020 Apr; 124(17):3583-3590. PubMed ID: 32271574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide.
    Kuehner JP; Naik SV; Kulatilaka WD; Chai N; Laurendeau NM; Lucht RP; Scully MO; Roy S; Patnaik AK; Gord JR
    J Chem Phys; 2008 May; 128(17):174308. PubMed ID: 18465923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-spectral-resolution coherent anti-Stokes Raman scattering with interferometrically detected broadband chirped pulses.
    Jones GW; Marks DL; Vinegoni C; Boppart SA
    Opt Lett; 2006 May; 31(10):1543-5. PubMed ID: 16642166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity.
    Lis D; Cecchet F
    Beilstein J Nanotechnol; 2014; 5():2275-92. PubMed ID: 25551056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.