These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33500094)

  • 1. The Cu Matrix Strengthened by TiH₂-C
    Thi N; Oanh H; Viet NH
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2687-2691. PubMed ID: 33500094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and Mechanical Properties of Nanocrystalline Al-Zn-Mg-Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Cheng J; Cai Q; Zhao B; Yang S; Chen F; Li B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing and Properties of ZrB
    Sulima I; Boczkal G
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.
    Saheb N; Aliyu IK; Hassan SF; Al-Aqeeli N
    Materials (Basel); 2014 Sep; 7(9):6748-6767. PubMed ID: 28788210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of TiC/Ti₃SiC₂ Composite by Sintering Mechanical Alloyed Ti-Si-C Powder Mixtures.
    Pais Alves MFR; Santos CD; Freitas BX; Ramos AS; Ramos ECT; Strecker K
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4580-4586. PubMed ID: 31968521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Deformation Behavior of Ti-SiC Composites Made by Mechanical Alloying and Spark Plasma Sintering.
    Garbiec D; Leshchynsky V; Colella A; Matteazzi P; Siwak P
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark-plasma sintering.
    Kim JS; Dudina DV; Kim JC; Kwon YS; Park JJ; Rhee CK
    J Nanosci Nanotechnol; 2010 Jan; 10(1):252-7. PubMed ID: 20352842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Ultra-Fine-Grained W-TiC Alloys by a Simple Ball-Milling and Hydrogen Reduction Method.
    Lang S; Sun N; Cao J; Yu W; Yang Z; Hou S
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and Tribological Behavior of Mechanically Alloyed Ni-TiC Composites Processed via Spark Plasma Sintering.
    Walunj G; Bearden A; Patil A; Larimian T; Christudasjustus J; Gupta RK; Borkar T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al⁻Cu Composite Materials Fabricated by Spark Plasma Sintering.
    Kim K; Kim D; Park K; Cho M; Cho S; Kwon H
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spark Plasma Sintering of Copper Matrix Composites Reinforced with TiB
    Pellizzari M; Cipolloni G
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32517365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of the Zirconium Diboride-Reinforced Composites by a Combination of Planetary Ball Milling, Turbula Mixing and Spark Plasma Sintering.
    Sulima I; Hyjek P; Podsiadło M
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Processing Parameters on the Microstructure and Mechanical Properties of Nanoscaled WC-10Co Cemented Carbide.
    Wang Y; Xiang F; Yuan X; Yang B; Wang F; Li Y
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Spark Plasma Sintering of Soft Magnetic Composite in a Fe₂O₃–Al System by Mechanical Alloying.
    Lee CH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2453-456. PubMed ID: 29648756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spark plasma sintered Sm(2)Co(17)-FeCo nanocomposite permanent magnets synthesized by high energy ball milling.
    Sreenivasulu G; Gopalan R; Chandrasekaran V; Markandeyulu G; Suresh KG; Murty BS
    Nanotechnology; 2008 Aug; 19(33):335701. PubMed ID: 21730627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Tungsten Carbides in a Copper Matrix by Spark Plasma Sintering: Microstructure Formation Mechanisms and Properties of the Consolidated Materials.
    Vidyuk TM; Ukhina AV; Gavrilov AI; Shikalov VS; Anisimov AG; Lomovsky OI; Dudina DV
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phase analysis of spark plasma sintered MgB2 after ball milling.
    Kang DK; Kim DW; Kim CJ; Ahn IS
    J Nanosci Nanotechnol; 2010 Jan; 10(1):142-6. PubMed ID: 20352824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed Current Activated Synthesis and Consolidation of Nanostructured Ti-TiC Composite and Its Mechanical Properties.
    Kim DK; Park NR; Kim BS; Yoon JK; Hong KT; Shon IJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1898-901. PubMed ID: 27433696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Milling-Assisted Spark Plasma Sintering of Fine-Grained W-Ni-Mn Alloy.
    Pan Y; Xiang D; Wang N; Li H; Fan Z
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30065176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructures and mechanical properties of in situ TiC-β-Ti-Nb composites with ultrafine grains fabricated by high-pressure sintering.
    Liu Z; Zhang DC; Gong LJ; Lin JG; Wen C
    Sci Rep; 2018 Jun; 8(1):9496. PubMed ID: 29934506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.