BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 33500316)

  • 1. Optimization of a bacterial three-hybrid assay through in vivo titration of an RNA-DNA adapter protein.
    Wang CD; Mansky R; LeBlanc H; Gravel CM; Berry KE
    RNA; 2021 Apr; 27(4):513-526. PubMed ID: 33500316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition among Hfq-binding small RNAs in Escherichia coli.
    Moon K; Gottesman S
    Mol Microbiol; 2011 Dec; 82(6):1545-62. PubMed ID: 22040174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and RNA-binding properties of the bacterial LSm protein Hfq.
    Sauer E
    RNA Biol; 2013 Apr; 10(4):610-8. PubMed ID: 23535768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cycling of RNAs on Hfq.
    Wagner EG
    RNA Biol; 2013 Apr; 10(4):619-26. PubMed ID: 23466677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bacterial three-hybrid assay detects Escherichia coli Hfq-sRNA interactions in vivo.
    Berry KE; Hochschild A
    Nucleic Acids Res; 2018 Jan; 46(2):e12. PubMed ID: 29140461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Producing Hfq/Sm Proteins and sRNAs for Structural and Biophysical Studies of Ribonucleoprotein Assembly.
    Stanek KA; Mura C
    Methods Mol Biol; 2018; 1737():273-299. PubMed ID: 29484599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New aspects of RNA-based regulation by Hfq and its partner sRNAs.
    Kavita K; de Mets F; Gottesman S
    Curr Opin Microbiol; 2018 Apr; 42():53-61. PubMed ID: 29125938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation.
    Iosub IA; van Nues RW; McKellar SW; Nieken KJ; Marchioretto M; Sy B; Tree JJ; Viero G; Granneman S
    Elife; 2020 May; 9():. PubMed ID: 32356726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets.
    Zhang A; Schu DJ; Tjaden BC; Storz G; Gottesman S
    J Mol Biol; 2013 Oct; 425(19):3678-97. PubMed ID: 23318956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS.
    Henderson CA; Vincent HA; Casamento A; Stone CM; Phillips JO; Cary PD; Sobott F; Gowers DM; Taylor JEN; Callaghan AJ
    RNA; 2013 Aug; 19(8):1089-104. PubMed ID: 23804244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments.
    Cameron TA; Matz LM; Sinha D; De Lay NR
    Nucleic Acids Res; 2019 Sep; 47(16):8821-8837. PubMed ID: 31329973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Mapping of Small RNA-Target Interactions in Bacteria.
    Melamed S; Peer A; Faigenbaum-Romm R; Gatt YE; Reiss N; Bar A; Altuvia Y; Argaman L; Margalit H
    Mol Cell; 2016 Sep; 63(5):884-97. PubMed ID: 27588604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles.
    Melamed S; Adams PP; Zhang A; Zhang H; Storz G
    Mol Cell; 2020 Jan; 77(2):411-425.e7. PubMed ID: 31761494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC).
    Sy B; Wong J; Granneman S; Tollervey D; Gally D; Tree JJ
    Methods Mol Biol; 2018; 1737():251-272. PubMed ID: 29484598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New molecular interactions broaden the functions of the RNA chaperone Hfq.
    Dos Santos RF; Arraiano CM; Andrade JM
    Curr Genet; 2019 Dec; 65(6):1313-1319. PubMed ID: 31104083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro.
    Partouche D; Malabirade A; Bizien T; Velez M; Trépout S; Marco S; Militello V; Sandt C; Wien F; Arluison V
    Methods Mol Biol; 2018; 1737():321-340. PubMed ID: 29484601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positional effects of AAN motifs in rpoS regulation by sRNAs and Hfq.
    Peng Y; Soper TJ; Woodson SA
    J Mol Biol; 2014 Jan; 426(2):275-85. PubMed ID: 24051417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.