These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33500461)

  • 1. In vitro optoacoustic flow cytometry with light scattering referencing.
    Seeger M; Stiel AC; Ntziachristos V
    Sci Rep; 2021 Jan; 11(1):2181. PubMed ID: 33500461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Platform for Optoacoustic Probing of Genetically Encoded Calcium Ion Indicators.
    Hofmann UAT; Fabritius A; Rebling J; Estrada H; Deán-Ben XL; Griesbeck O; Razansky D
    iScience; 2019 Dec; 22():400-408. PubMed ID: 31812810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods.
    Conversano F; Soloperto G; Greco A; Ragusa A; Casciaro E; Chiriacò F; Demitri C; Gigli G; Maffezzoli A; Casciaro S
    Int J Nanomedicine; 2012; 7():4373-89. PubMed ID: 22927756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback.
    Deán-Ben XL; Estrada H; Ozbek A; Razansky D
    Opt Lett; 2015 Nov; 40(22):5395-8. PubMed ID: 26565883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reporter gene-based optoacoustic imaging of E. coli targeted colon cancer in vivo.
    Yun M; You SH; Nguyen VH; Prakash J; Glasl S; Gujrati V; Choy HE; Stiel AC; Min JJ; Ntziachristos V
    Sci Rep; 2021 Dec; 11(1):24430. PubMed ID: 34952915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear optoacoustic readings from diffusive media at near-infrared wavelengths.
    Malekzadeh-Najafabadi J; Prakash J; Ntziachristos V
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28787111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optoacoustic imaging of naphthalocyanine: potential for contrast enhancement and therapy monitoring.
    Bézière N; Ntziachristos V
    J Nucl Med; 2015 Feb; 56(2):323-8. PubMed ID: 25552668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Sparsity-Based Inversion Scheme for Optoacoustic Tomography.
    Lutzweiler C; Tzoumas S; Rosenthal A; Ntziachristos V; Razansky D
    IEEE Trans Med Imaging; 2016 Feb; 35(2):674-84. PubMed ID: 26469127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography.
    Stiel AC; Deán-Ben XL; Jiang Y; Ntziachristos V; Razansky D; Westmeyer GG
    Opt Lett; 2015 Feb; 40(3):367-70. PubMed ID: 25680049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging.
    Jiang Y; Sigmund F; Reber J; Deán-Ben XL; Glasl S; Kneipp M; Estrada H; Razansky D; Ntziachristos V; Westmeyer GG
    Sci Rep; 2015 Jun; 5():11048. PubMed ID: 26091543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-Learning-Based Electrical Noise Removal Enables High Spectral Optoacoustic Contrast in Deep Tissue.
    Dehner C; Olefir I; Chowdhury KB; Justel D; Ntziachristos V
    IEEE Trans Med Imaging; 2022 Nov; 41(11):3182-3193. PubMed ID: 35657832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expediting model-based optoacoustic reconstructions with tomographic symmetries.
    Lutzweiler C; Deán-Ben XL; Razansky D
    Med Phys; 2014 Jan; 41(1):013302. PubMed ID: 24387532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Raman Flow Cytometry and Beyond.
    Gala de Pablo J; Lindley M; Hiramatsu K; Goda K
    Acc Chem Res; 2021 May; 54(9):2132-2143. PubMed ID: 33788539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-precision characterization of individual E. coli cell morphology by scanning flow cytometry.
    Konokhova AI; Gelash AA; Yurkin MA; Chernyshev AV; Maltsev VP
    Cytometry A; 2013 Jun; 83(6):568-75. PubMed ID: 23568828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography.
    Deán-Ben XL; Stiel AC; Jiang Y; Ntziachristos V; Westmeyer GG; Razansky D
    Opt Lett; 2015 Oct; 40(20):4691-4. PubMed ID: 26469596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional optoacoustic tomography at video rate.
    Buehler A; Deán-Ben XL; Claussen J; Ntziachristos V; Razansky D
    Opt Express; 2012 Sep; 20(20):22712-9. PubMed ID: 23037421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of Ultrawide Bandwidth for Optoacoustic Esophagus Imaging.
    He H; Buehler A; Bozhko D; Jian X; Cui Y; Ntziachristos V
    IEEE Trans Med Imaging; 2018 May; 37(5):1162-1167. PubMed ID: 29727279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of multispectral excitation on the sensitivity of molecular optoacoustic imaging.
    Tzoumas S; Nunes A; Deliolanis NC; Ntziachristos V
    J Biophotonics; 2015 Aug; 8(8):629-37. PubMed ID: 25284265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents.
    Bost W; Lemor R; Fournelle M
    Appl Opt; 2012 Nov; 51(33):8041-6. PubMed ID: 23207315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic particle enhancement in limited-view optoacoustic tomography.
    Deán-Ben XL; Ding L; Razansky D
    Opt Lett; 2017 Feb; 42(4):827-830. PubMed ID: 28198875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.