These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33500490)

  • 1. Oral administration of resveratrol or lactic acid bacterium improves lens elasticity.
    Nagashima H; Sasaki N; Amano S; Nakamura S; Hayano M; Tsubota K
    Sci Rep; 2021 Jan; 11(1):2174. PubMed ID: 33500490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relationship between lens stiffness and accommodative amplitude.
    Weeber HA; van der Heijde RG
    Exp Eye Res; 2007 Nov; 85(5):602-7. PubMed ID: 17720158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presbyopia and velocity of sound in the lens.
    Beers AP; Van der Heijde GL
    Optom Vis Sci; 1994 Apr; 71(4):250-3. PubMed ID: 8047337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modelling of the accommodating lens.
    Burd HJ; Judge SJ; Cross JA
    Vision Res; 2002 Aug; 42(18):2235-251. PubMed ID: 12207982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Questioning our classical understanding of accommodation and presbyopia.
    Adler-Grinberg D
    Am J Optom Physiol Opt; 1986 Jul; 63(7):571-80. PubMed ID: 3526908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia.
    Garner WH; Garner MH
    Invest Ophthalmol Vis Sci; 2016 May; 57(6):2851-63. PubMed ID: 27233034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved spinning lens test to determine the stiffness of the human lens.
    Burd HJ; Wilde GS; Judge SJ
    Exp Eye Res; 2011 Jan; 92(1):28-39. PubMed ID: 21040722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Resveratrol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozotocin-Induced Diabetes.
    Sedlak L; Wojnar W; Zych M; Wyględowska-Promieńska D; Mrukwa-Kominek E; Kaczmarczyk-Sedlak I
    Nutrients; 2018 Oct; 10(10):. PubMed ID: 30287729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the effects of postmortem time and age on mouse lens elasticity using atomic force microscopy.
    Batchelor WM; Heilman BM; Arrieta-Quintero E; Ruggeri M; Parel JM; Manns F; Cabrera-Ghayouri S; Dibas M; Ziebarth NM
    Exp Eye Res; 2021 Nov; 212():108768. PubMed ID: 34534541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lens hardness not related to the age-related decline of accommodative amplitude.
    Schachar RA; Pierscionek BK
    Mol Vis; 2007 Jun; 13():1010-1. PubMed ID: 17653044
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of the lens capsule on the mechanical accommodative response in a lens stretcher.
    Ziebarth NM; Borja D; Arrieta E; Aly M; Manns F; Dortonne I; Nankivil D; Jain R; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4490-6. PubMed ID: 18515568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-cataract Effect of Resveratrol in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats.
    Higashi Y; Higashi K; Mori A; Sakamoto K; Ishii K; Nakahara T
    Biol Pharm Bull; 2018; 41(10):1586-1592. PubMed ID: 30270328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher.
    Reilly MA; Hamilton PD; Perry G; Ravi N
    Exp Eye Res; 2009 Mar; 88(3):483-94. PubMed ID: 19041865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a simple mechanical model of accommodation to the aging eye.
    Wyatt HJ
    Vision Res; 1993; 33(5-6):731-8. PubMed ID: 8351845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of compound treatments on mouse lens viscoelasticity.
    Maceo Heilman B; Mote K; Batchelor W; Rowaan C; Gonzalez A; Arrieta E; Ruggeri M; Ziebarth N; Cabrera-Ghayouri S; Dibas M; Parel JM; Manns F
    Exp Eye Res; 2024 Sep; 246():109992. PubMed ID: 38972445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presbyopia and the changes with age in the human crystalline lens.
    Fisher RF
    J Physiol; 1973 Feb; 228(3):765-79. PubMed ID: 4702155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses.
    Krueger RR; Sun XK; Stroh J; Myers R
    Ophthalmology; 2001 Nov; 108(11):2122-9. PubMed ID: 11713090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse lens stiffness measurements.
    Baradia H; Nikahd N; Glasser A
    Exp Eye Res; 2010 Aug; 91(2):300-7. PubMed ID: 20542031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of shape and stiffness to accommodative loss in the ageing human lens: a finite element model assessment.
    Wang K; Hoshino M; Uesugi K; Yagi N; Pierscionek BK
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):B116-B122. PubMed ID: 31044989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia.
    Reilly MA
    Vision Res; 2014 Oct; 103():20-31. PubMed ID: 25130408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.