These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33500514)

  • 1. Large-scale preparation of Co nanoparticles as an additive in carbon fiber for microwave absorption enhancement in C band.
    Zhu YX; Wang SF; Zhang YS; Wu ZG; Zhong B; Li DR; Wang FY; Feng JJ; Tang J; Zhuo RF; Yan PX
    Sci Rep; 2021 Jan; 11(1):2171. PubMed ID: 33500514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption.
    Shao R; Wang F; Yang S; Jin J; Li G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.
    Li D; Liao H; Kikuchi H; Liu T
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44704-44714. PubMed ID: 29199817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ZnCl
    Wang L; Zhou P; Guo Y; Zhang J; Qiu X; Guan Y; Yu M; Zhu H; Zhang Q
    RSC Adv; 2019 Mar; 9(17):9718-9728. PubMed ID: 35520714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.
    Qiu X; Wang L; Zhu H; Guan Y; Zhang Q
    Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances.
    Yuan X; Wang R; Huang W; Kong L; Guo S; Cheng L
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13208-13216. PubMed ID: 32092255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Graphene Oxide Modified Nitrogen-Doped Chitosan Carbon Fiber with Excellent Electromagnetic Wave Absorbing Performance.
    Guo M; Lin M; Xu J; Pan Y; Ma C; Chen G
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long Carbon Fibers for Microwave Absorption: Effect of Fiber Length on Absorption Frequency Band.
    Breiss H; El Assal A; Benzerga R; Méjean C; Sharaiha A
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bead-like cobalt nanoparticles coated with dielectric SiO
    Wang B; Liao H; Xie X; Wu Q; Liu T
    J Colloid Interface Sci; 2020 Oct; 578():346-357. PubMed ID: 32535417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yolk-shell structured Co@SiO
    Wang B; Wu Q; Fu Y; Liu T
    J Colloid Interface Sci; 2021 Jul; 594():342-351. PubMed ID: 33773386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co
    Zeng S; Han S; Sun X; Wang L; Gao Y; Chen Z; Feng H
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption.
    Guo Z; Ren P; Zhang F; Duan H; Chen Z; Jin Y; Ren F; Li Z
    J Colloid Interface Sci; 2022 Mar; 610():1077-1087. PubMed ID: 34887064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimized impedance matching construction strategy: carbon nanofibers inlaid with Ni nanocrystals by electrospinning for high-performance microwave absorber.
    Zhang D; Gao H; Han C; Zeng G; Wu Q
    RSC Adv; 2024 Jun; 14(29):20683-20690. PubMed ID: 38952935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties.
    Wu F; Liu P; Wang J; Shah T; Ahmad M; Zhang Q; Zhang B
    J Colloid Interface Sci; 2020 Oct; 577():242-255. PubMed ID: 32485408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofiber network with adjustable nanostructure controlled by PVP content for an excellent microwave absorption.
    Lv J; Gu W; Cui X; Dai S; Zhang B; Ji G
    Sci Rep; 2019 Mar; 9(1):4271. PubMed ID: 30862890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SiC Nanofiber Mat: A Broad-Band Microwave Absorber, and the Alignment Effect.
    Hou Y; Cheng L; Zhang Y; Yang Y; Deng C; Yang Z; Chen Q; Du X; Zheng L
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43072-43080. PubMed ID: 29139298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lightweight TiO
    He M; Liao Q; Zhou Y; Song Z; Wang Y; Feng S; Xu R; Peng H; Chen X; Kang Y
    Langmuir; 2022 Jan; 38(3):945-956. PubMed ID: 35019654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CoxNi100-x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption.
    Wang H; Dai YY; Geng DY; Ma S; Li D; An J; He J; Liu W; Zhang ZD
    Nanoscale; 2015 Nov; 7(41):17312-9. PubMed ID: 26346583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synergistic effects of carbon coating and micropore structure on the microwave absorption properties of Co/CoO nanoparticles.
    Xie X; Pang Y; Kikuchi H; Liu T
    Phys Chem Chem Phys; 2016 Nov; 18(44):30507-30514. PubMed ID: 27782256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.