BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33500912)

  • 1. Exploiting Three-Dimensional Gaze Tracking for Action Recognition During Bimanual Manipulation to Enhance Human-Robot Collaboration.
    Haji Fathaliyan A; Wang X; Santos VJ
    Front Robot AI; 2018; 5():25. PubMed ID: 33500912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaze-Based Shared Autonomy Framework With Real-Time Action Primitive Recognition for Robot Manipulators.
    Wang X; Santos VJ
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4306-4317. PubMed ID: 37906485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-like object tracking and gaze estimation with PKD android.
    Wijayasinghe IB; Miller HL; Das SK; Bugnariu NL; Popa DO
    Proc SPIE Int Soc Opt Eng; 2016 May; 9859():. PubMed ID: 29416193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Shared Autonomy Control Schemes for Human-Robot Systems: Action Primitive Recognition Using Eye Gaze Features.
    Wang X; Haji Fathaliyan A; Santos VJ
    Front Neurorobot; 2020; 14():567571. PubMed ID: 33178006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Object Grasp Control of a 3D Robot Arm by Combining EOG Gaze Estimation and Camera-Based Object Recognition.
    Amri Bin Suhaimi MS; Matsushita K; Kitamura T; Laksono PW; Sasaki M
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Attention Network for Egocentric Action Recognition.
    Lu M; Li ZN; Wang Y; Pan G
    IEEE Trans Image Process; 2019 Aug; 28(8):3703-3713. PubMed ID: 30835222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating accurate 3D gaze vectors using synchronized eye tracking and motion capture.
    Stone SA; Boser QA; Dawson TR; Vette AH; Hebert JS; Pilarski PM; Chapman CS
    Behav Res Methods; 2024 Jan; 56(1):18-31. PubMed ID: 36085543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaze Point Tracking Based on a Robotic Body-Head-Eye Coordination Method.
    Feng X; Wang Q; Cong H; Zhang Y; Qiu M
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objects guide human gaze behavior in dynamic real-world scenes.
    Roth N; Rolfs M; Hellwich O; Obermayer K
    PLoS Comput Biol; 2023 Oct; 19(10):e1011512. PubMed ID: 37883331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye-Tracking in Physical Human-Robot Interaction: Mental Workload and Performance Prediction.
    Upasani S; Srinivasan D; Zhu Q; Du J; Leonessa A
    Hum Factors; 2024 Aug; 66(8):2104-2119. PubMed ID: 37793896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Grasp Intention Recognition Based on Gaze in Human-Robot Interaction.
    Yang B; Huang J; Chen X; Li X; Hasegawa Y
    IEEE J Biomed Health Inform; 2023 Apr; 27(4):2059-2070. PubMed ID: 37030731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time tracking of visually attended objects in virtual environments and its application to LOD.
    Lee S; Kim GJ; Choi S
    IEEE Trans Vis Comput Graph; 2009; 15(1):6-19. PubMed ID: 19008552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communicative Signals Promote Object Recognition Memory and Modulate the Right Posterior STS.
    Redcay E; Ludlum RS; Velnoskey KR; Kanwal S
    J Cogn Neurosci; 2016 Jan; 28(1):8-19. PubMed ID: 26351992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote gaze tracking system for 3D environments.
    Congcong Liu ; Herrup K; Shi BE
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1768-1771. PubMed ID: 29060230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Return Strategy and Machine Learning Optimization of Tennis Sports Robot for Human Motion Recognition.
    Wang Y; Yang X; Wang L; Hong Z; Zou W
    Front Neurorobot; 2022; 16():857595. PubMed ID: 35574231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-in-the-Loop Robot Control for Human-Robot Collaboration: HUMAN INTENTION ESTIMATION AND SAFE TRAJECTORY TRACKING CONTROL FOR COLLABORATIVE TASKS.
    Dani AP; Salehi I; Rotithor G; Trombetta D; Ravichandar H
    IEEE Control Syst; 2020 Dec; 40(6):29-56. PubMed ID: 35002195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition.
    Mathe S; Sminchisescu C
    IEEE Trans Pattern Anal Mach Intell; 2015 Jul; 37(7):1408-24. PubMed ID: 26352449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Object-Gaze Distance: Quantifying Near- Peripheral Gaze Behavior in Real-World Applications.
    Wang FS; Wolf J; Farshad M; Meboldt M; Lohmeyer Q
    J Eye Mov Res; 2021 May; 14(1):. PubMed ID: 34122747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.