These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33500930)

  • 1. A Soft-Inflatable Exosuit for Knee Rehabilitation: Assisting Swing Phase During Walking.
    Sridar S; Qiao Z; Muthukrishnan N; Zhang W; Polygerinos P
    Front Robot AI; 2018; 5():44. PubMed ID: 33500930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hinge-free, non-restrictive, lightweight tethered exosuit for knee extension assistance during walking.
    Park EJ; Akbas T; Eckert-Erdheim A; Sloot LH; Nuckols RW; Orzel D; Schumm L; Ellis TD; Awad LN; Walsh CJ
    IEEE Trans Med Robot Bionics; 2020; 2(2):165-175. PubMed ID: 33748694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue.
    Chen L; Chen C; Wang Z; Ye X; Liu Y; Wu X
    Biosensors (Basel); 2021 Jun; 11(7):. PubMed ID: 34208947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From a biological template model to gait assistance with an exosuit.
    Firouzi V; Davoodi A; Bahrami F; Sharbafi MA
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34624880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A soft robotic exosuit improves walking in patients after stroke.
    Awad LN; Bae J; O'Donnell K; De Rossi SMM; Hendron K; Sloot LH; Kudzia P; Allen S; Holt KG; Ellis TD; Walsh CJ
    Sci Transl Med; 2017 Jul; 9(400):. PubMed ID: 28747517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O 089 - A soft robotic exosuit assisting the paretic ankle in patients post-stroke: Effect on muscle activation during overground walking.
    Sloot L; Bae J; Baker L; O'Donnell K; Menard N; Porciuncula F; Choe D; Ellis T; Awad L; Walsh C
    Gait Posture; 2022 Jun; 95():217-218. PubMed ID: 29983296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices.
    Fang J; Yuan J; Wang M; Xiao L; Yang J; Lin Z; Xu P; Hou L
    Soft Robot; 2020 Feb; 7(1):95-108. PubMed ID: 31566506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing Circumduction and Hip Hiking During Hemiparetic Walking Through Targeted Assistance of the Paretic Limb Using a Soft Robotic Exosuit.
    Awad LN; Bae J; Kudzia P; Long A; Hendron K; Holt KG; OʼDonnell K; Ellis TD; Walsh CJ
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S157-S164. PubMed ID: 28777105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft robotic exosuit augmented high intensity gait training on stroke survivors: a pilot study.
    Shin SY; Hohl K; Giffhorn M; Awad LN; Walsh CJ; Jayaraman A
    J Neuroeng Rehabil; 2022 Jun; 19(1):51. PubMed ID: 35655180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a soft robotic exosuit on the quality and speed of overground walking depends on walking ability after stroke.
    Sloot LH; Baker LM; Bae J; Porciuncula F; Clément BF; Siviy C; Nuckols RW; Baker T; Sloutsky R; Choe DK; O'Donnell K; Ellis TD; Awad LN; Walsh CJ
    J Neuroeng Rehabil; 2023 Sep; 20(1):113. PubMed ID: 37658408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation.
    Awad LN; Kudzia P; Revi DA; Ellis TD; Walsh CJ
    IEEE Open J Eng Med Biol; 2020; 1():108-115. PubMed ID: 33748765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically-inspired soft exosuit.
    Asbeck AT; Dyer RJ; Larusson AF; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650455. PubMed ID: 24187272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of two-joint rectus femoris and hamstrings during the swing phase of human walking and running.
    Prilutsky BI; Gregor RJ; Ryan MM
    Exp Brain Res; 1998 Jun; 120(4):479-86. PubMed ID: 9655233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force and Torque Characterization in the Actuation of a Walking-Assistance, Cable-Driven Exosuit.
    Rodríguez Jorge D; Bermejo García J; Jayakumar A; Lorente Moreno R; Agujetas Ortiz R; Romero Sánchez F
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of rectus femoris function during initial swing phase.
    Nene A; Mayagoitia R; Veltink P
    Gait Posture; 1999 Mar; 9(1):1-9. PubMed ID: 10575064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle Activation Profiles and Co-Activation of Quadriceps and Hamstring Muscles around Knee Joint in Indian Primary Osteoarthritis Knee Patients.
    Sharma SK; Yadav SL; Singh U; Wadhwa S
    J Clin Diagn Res; 2017 May; 11(5):RC09-RC14. PubMed ID: 28658860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study on the Differences of Quadriceps Femoris Activities by Knee Alignment during Isometric Contraction.
    Park S; Ko YM; Jang GU; Hwang YT; Park JW
    J Phys Ther Sci; 2014 Nov; 26(11):1685-8. PubMed ID: 25435677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the relative muscle activation of the vastus medialis, rectus femoris, and vastus lateralis, during the various activities, change in relation to the quadriceps angle?
    Lee N
    J Phys Ther Sci; 2018 Apr; 30(4):540-543. PubMed ID: 29706702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyographic and kinematic analysis of graded treadmill walking and the implications for knee rehabilitation.
    Lange GW; Hintermeister RA; Schlegel T; Dillman CJ; Steadman JR
    J Orthop Sports Phys Ther; 1996 May; 23(5):294-301. PubMed ID: 8728527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.