BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33500945)

  • 1. RenderGAN: Generating Realistic Labeled Data.
    Sixt L; Wild B; Landgraf T
    Front Robot AI; 2018; 5():66. PubMed ID: 33500945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks.
    Qian X; Li E; Zhang J; Zhao SN; Wu QE; Zhang H; Wang W; Wu Y
    Front Neurorobot; 2019; 13():73. PubMed ID: 31551748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised X-ray image segmentation with task driven generative adversarial networks.
    Zhang Y; Miao S; Mansi T; Liao R
    Med Image Anal; 2020 May; 62():101664. PubMed ID: 32120268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions.
    Alajaji SA; Khoury ZH; Elgharib M; Saeed M; Ahmed ARH; Khan MB; Tavares T; Jessri M; Puche AC; Hoorfar H; Stojanov I; Sciubba JJ; Sultan AS
    Mod Pathol; 2024 Jan; 37(1):100369. PubMed ID: 37890670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Liver Image Segmentation Using Generative Adversarial Networks Based on Feature Restoration.
    He R; Xu S; Liu Y; Li Q; Liu Y; Zhao N; Yuan Y; Zhang H
    Front Med (Lausanne); 2021; 8():794969. PubMed ID: 35071275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAN-Based Image Colorization for Self-Supervised Visual Feature Learning.
    Treneska S; Zdravevski E; Pires IM; Lameski P; Gievska S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks.
    Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI
    Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised Semantic-Preserving Adversarial Hashing for Image Search.
    Deng C; Yang E; Liu T; Li J; Liu W; Tao D
    IEEE Trans Image Process; 2019 Aug; 28(8):4032-4044. PubMed ID: 30872226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing MR image segmentation with realistic adversarial data augmentation.
    Chen C; Qin C; Ouyang C; Li Z; Wang S; Qiu H; Chen L; Tarroni G; Bai W; Rueckert D
    Med Image Anal; 2022 Nov; 82():102597. PubMed ID: 36095907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pavement crack synthesis method based on conditional generative adversarial networks.
    Yao H; Wu Y; Liu S; Liu Y; Xie H
    Math Biosci Eng; 2024 Jan; 21(1):903-923. PubMed ID: 38303448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What do adversarial images tell us about human vision?
    Dujmović M; Malhotra G; Bowers JS
    Elife; 2020 Sep; 9():. PubMed ID: 32876562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning.
    Hasan SMK; Linte CA
    Appl Sci (Basel); 2022 Dec; 12(23):. PubMed ID: 37125242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TCGAN: Convolutional Generative Adversarial Network for time series classification and clustering.
    Huang F; Deng Y
    Neural Netw; 2023 Aug; 165():868-883. PubMed ID: 37433231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.