BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33500951)

  • 1. Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams.
    Näf MB; Koopman AS; Baltrusch S; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    Front Robot AI; 2018; 5():72. PubMed ID: 33500951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards low back support with a passive biomimetic exo-spine.
    Naf MB; De Rijcke L; Guerrero CR; Millard M; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1165-1170. PubMed ID: 28813979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.
    Schrøder Jakobsen L; Samani A; Desbrosses K; de Zee M; Madeleine P
    IISE Trans Occup Ergon Hum Factors; 2024 Jun; ():1-13. PubMed ID: 38869954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Statistical Parametric Mapping Analysis Approach for the Evaluation of a Passive Back Support Exoskeleton on Mechanical Loading During a Simulated Patient Transfer Task.
    Latorre Erezuma U; Zelaia Amilibia M; Espin Elorza A; Cortés C; Irazusta J; Rodriguez-Larrad A
    J Appl Biomech; 2023 Feb; 39(1):22-33. PubMed ID: 36649717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting.
    Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of Soft versus Rigid Back-Support Exoskeletons during a Lifting Task.
    Schwartz M; Theurel J; Desbrosses K
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of a new passive back support exoskeleton.
    Koopman AS; Näf M; Baltrusch SJ; Kingma I; Rodriguez-Guerrero C; Babič J; de Looze MP; van Dieën JH
    J Biomech; 2020 May; 105():109795. PubMed ID: 32423541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting.
    Koopman AS; Kingma I; de Looze MP; van Dieën JH
    J Biomech; 2020 Mar; 102():109486. PubMed ID: 31718821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks.
    Koopman AS; Kingma I; Faber GS; de Looze MP; van Dieën JH
    J Biomech; 2019 Jan; 83():97-103. PubMed ID: 30514627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a Back Exoskeleton During Industrial and Functional Tasks-Effects on Muscle Activity, Posture, Performance, Usability, and Wearer Discomfort in a Laboratory Trial.
    Luger T; Bär M; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2023 Feb; 65(1):5-21. PubMed ID: 33861139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures.
    van Sluijs RM; Wehrli M; Brunner A; Lambercy O
    J Biomech; 2023 Mar; 149():111489. PubMed ID: 36806003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting.
    Koopman AS; Toxiri S; Power V; Kingma I; van Dieën JH; Ortiz J; de Looze MP
    J Biomech; 2019 Jun; 91():14-22. PubMed ID: 31122661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking.
    Baltrusch SJ; van Dieën JH; Bruijn SM; Koopman AS; van Bennekom CAM; Houdijk H
    Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lower-Back Exoskeleton With a Four-Bar Linkage Structure for Providing Extensor Moment and Lumbar Traction Force.
    Moon C; Bae J; Kwak J; Hong D
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():729-737. PubMed ID: 35286262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneously varying back stiffness and trunk compression in a passive trunk exoskeleton during different activities: A pilot study.
    Gorsic M; Song Y; Johnson AP; Dai B; Novak D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4886-4890. PubMed ID: 34892304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support.
    van Sluijs R; Scholtysik T; Brunner A; Kuoni L; Bee D; Kos M; Bartenbach V; Lambercy O
    Appl Ergon; 2024 Jun; 120():104332. PubMed ID: 38876001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Backbone-Tracking Passive Exoskeleton to Reduce the Stress on the Low-Back: Proof of Concept Study.
    Pesenti M; Gandolla M; Pedrocchi A; Roveda L
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine.
    Picchiotti MT; Weston EB; Knapik GG; Dufour JS; Marras WS
    Appl Ergon; 2019 Feb; 75():1-7. PubMed ID: 30509514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible sensor-based biomechanical evaluation of low-back exoskeleton use in lifting.
    Yin W; Chen Y; Reddy C; Zheng L; Mehta RK; Zhang X
    Ergonomics; 2024 Feb; 67(2):182-193. PubMed ID: 37204270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.