These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33500968)

  • 1. A Bio-inspired Grasp Stiffness Control for Robotic Hands.
    Ruiz Garate V; Pozzi M; Prattichizzo D; Ajoudani A
    Front Robot AI; 2018; 5():89. PubMed ID: 33500968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidigit force control during unconstrained grasping in response to object perturbations.
    Naceri A; Moscatelli A; Haschke R; Ritter H; Santello M; Ernst MO
    J Neurophysiol; 2017 May; 117(5):2025-2036. PubMed ID: 28228582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Passively Conforming Soft Robotic Gripper with Three-Dimensional Negative Bending Stiffness Fingers.
    Chu AH; Cheng T; Muralt A; Onal CD
    Soft Robot; 2023 Jun; 10(3):556-567. PubMed ID: 36854140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-Robotic Variable-Stiffness Grasps of Small-Fruit Containers Are Successful Even Under Severely Impaired Sensory Feedback.
    Haas M; Friedl W; Stillfried G; Höppner H
    Front Neurorobot; 2018; 12():70. PubMed ID: 30429783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards humanlike grasp in robotic hands: mechanical implementation of force synergies.
    Teng Z; Xu G; Pei J; Li B; Zhang S; Li D
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38579732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-dependent selection of grasp kinematics and stiffness in human object manipulation.
    Friedman J; Flash T
    Cortex; 2007 Apr; 43(3):444-60. PubMed ID: 17533767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grasp quality measures: review and performance.
    Roa MA; Suárez R
    Auton Robots; 2015; 38(1):65-88. PubMed ID: 26074671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DGCM-Net: Dense Geometrical Correspondence Matching Network for Incremental Experience-Based Robotic Grasping.
    Patten T; Park K; Vincze M
    Front Robot AI; 2020; 7():120. PubMed ID: 33501286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation into reducing anthropomorphic hand degrees of freedom while maintaining human hand grasping functions.
    Zarzoura M; Del Moral P; Awad MI; Tolbah FA
    Proc Inst Mech Eng H; 2019 Feb; 233(2):279-292. PubMed ID: 30599790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Grasp Mechanism Understanding, Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots.
    Zheng W; Guo N; Zhang B; Zhou J; Tian G; Xiong Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of a reach-and grasp optimization algorithm inspired to human arm-hand control.
    Cordella F; Zollo L; Salerno A; Guglielmelli E; Siciliano B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8150-3. PubMed ID: 22256233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Underactuated Robotic Finger with Variable Stiffness Joints.
    Teng Z; Xu G; Liang R; Li M; Zhang S; Tao T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5305-5309. PubMed ID: 31947054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of human grasping behavior: correlating tasks, objects and grasps.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(4):430-41. PubMed ID: 25532148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hand synergies during reach-to-grasp.
    Mason CR; Gomez JE; Ebner TJ
    J Neurophysiol; 2001 Dec; 86(6):2896-910. PubMed ID: 11731546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Needle Grasp and Entry Port Selection for Automatic Execution of Suturing Tasks in Robotic Minimally Invasive Surgery.
    Liu T; Çavuşoğlu MC
    IEEE Trans Autom Sci Eng; 2016 Apr; 13(2):552-563. PubMed ID: 27158248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Investigation of Hand Grasp Functionality: Hand Joint Motion Correlation, Independence, and Grasping Behavior.
    Liu Y; Zeng B; Zhang T; Jiang L; Liu H; Ming D
    Appl Bionics Biomech; 2021; 2021():2787832. PubMed ID: 34899980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers.
    Hao Y; Visell Y
    Front Robot AI; 2021; 8():632006. PubMed ID: 34307466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.