These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33500968)

  • 21. Human-Like Endtip Stiffness Modulation Inspires Dexterous Manipulation With Robotic Hands.
    Shafer A; Deshpande AD
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1138-1146. PubMed ID: 35420986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Learning Method for Grasping Novel Objects Using Dexterous Hands.
    Shang W; Song F; Zhao Z; Gao H; Cong S; Li Z
    IEEE Trans Cybern; 2022 May; 52(5):2750-2762. PubMed ID: 33001823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling Contact Stiffness of Soft Fingertips for Grasping Applications.
    Ma X; Chen L; Gao Y; Liu D; Wang B
    Biomimetics (Basel); 2023 Sep; 8(5):. PubMed ID: 37754149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of homogenous object stiffness on tri-digit grasp properties.
    Godfrey SB; Altobelli A; Rossi M; Bicchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6704-7. PubMed ID: 26737831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-Orbit Robotic Grasping of a Spent Rocket Stage: Grasp Stability Analysis and Experimental Results.
    Mavrakis N; Hao Z; Gao Y
    Front Robot AI; 2021; 8():652681. PubMed ID: 34222349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation.
    Zhu T; Wu R; Hang J; Lin X; Sun Y
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving Fine Control of Grasping Force during Hand-Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand.
    Fu Q; Santello M
    Front Neurorobot; 2017; 11():71. PubMed ID: 29375360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grasping learning, optimization, and knowledge transfer in the robotics field.
    Pozzi L; Gandolla M; Pura F; Maccarini M; Pedrocchi A; Braghin F; Piga D; Roveda L
    Sci Rep; 2022 Mar; 12(1):4481. PubMed ID: 35296691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning Grasp Configuration Through Object-Specific Hand Primitives for Posture Planning of Anthropomorphic Hands.
    Liu B; Jiang L; Fan S; Dai J
    Front Neurorobot; 2021; 15():740262. PubMed ID: 34603004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.
    Montaño A; Suárez R
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realtime Hand-Object Interaction Using Learned Grasp Space for Virtual Environments.
    Tian H; Wang C; Manocha D; Zhang X
    IEEE Trans Vis Comput Graph; 2019 Aug; 25(8):2623-2635. PubMed ID: 29994119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grasp Stability Prediction for a Dexterous Robotic Hand Combining Depth Vision and Haptic Bayesian Exploration.
    Siddiqui MS; Coppola C; Solak G; Jamone L
    Front Robot AI; 2021; 8():703869. PubMed ID: 34458325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of human grasping behavior: object characteristics and grasp type.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(3):311-23. PubMed ID: 25248214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot.
    Rodriguez-Cianca D; Weckx M; Jimenez-Fabian R; Torricelli D; Gonzalez-Vargas J; Sanchez-Villamañan MC; Sartori M; Berns K; Vanderborght B; Pons JL; Lefeber D
    Front Neurorobot; 2019; 13():20. PubMed ID: 31156418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blended shared control utilizing online identification : Regulating grasping forces of a surrogate surgical grasper.
    Stephens TK; Kong NJ; Dockter RL; O'Neill JJ; Sweet RM; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):769-776. PubMed ID: 29594854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic grasp planning of multifingered robot hands based on asymptotic stability.
    Guo G; Gruver WA
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(5):764-8. PubMed ID: 18263074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An extended algorithm for autonomous grasping of soft tissues during robotic surgery.
    Amirkhani G; Farahmand F; Yazdian SM; Mirbagheri A
    Int J Med Robot; 2020 Oct; 16(5):1-15. PubMed ID: 32390288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability of perception of the hand's aperture in a grasp.
    Butler AA; Héroux ME; van Eijk T; Gandevia SC
    J Physiol; 2019 Dec; 597(24):5973-5984. PubMed ID: 31671476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A soft, synergy-based robotic glove for grasping assistance.
    Alicea R; Xiloyannis M; Chiaradia D; Barsotti M; Frisoli A; Masia L
    Wearable Technol; 2021; 2():e4. PubMed ID: 38486631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning Optimal Fin-Ray Finger Design for Soft Grasping.
    Deng Z; Li M
    Front Robot AI; 2020; 7():590076. PubMed ID: 33644122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.