These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33500983)
1. An Adaptive and Hybrid End-Point/Joint Impedance Controller for Lower Limb Exoskeletons. Maggioni S; Reinert N; Lünenburger L; Melendez-Calderon A Front Robot AI; 2018; 5():104. PubMed ID: 33500983 [TBL] [Abstract][Full Text] [Related]
2. Assessing walking ability using a robotic gait trainer: opportunities and limitations of assist-as-needed control in spinal cord injury. Maggioni S; Lünenburger L; Riener R; Curt A; Bolliger M; Melendez-Calderon A J Neuroeng Rehabil; 2023 Sep; 20(1):121. PubMed ID: 37735690 [TBL] [Abstract][Full Text] [Related]
3. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
4. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial. Frullo JM; Elinger J; Pehlivan AU; Fitle K; Nedley K; Francisco GE; Sergi F; O'Malley MK Front Neurorobot; 2017; 11():26. PubMed ID: 28659784 [TBL] [Abstract][Full Text] [Related]
5. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
6. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury. Wu AR; Dzeladini F; Brug TJH; Tamburella F; Tagliamonte NL; van Asseldonk EHF; van der Kooij H; Ijspeert AJ Front Neurorobot; 2017; 11():30. PubMed ID: 28676752 [TBL] [Abstract][Full Text] [Related]
7. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot. Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472 [TBL] [Abstract][Full Text] [Related]
9. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum. Ghannadi B; Sharif Razavian R; McPhee J Front Robot AI; 2018; 5():124. PubMed ID: 33501003 [TBL] [Abstract][Full Text] [Related]
10. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation. Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915 [TBL] [Abstract][Full Text] [Related]
11. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691 [TBL] [Abstract][Full Text] [Related]
12. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
13. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field. Asl HJ; Narikiyo T IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727 [TBL] [Abstract][Full Text] [Related]
14. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking. Chang CH; Casas J; Brose SW; Duenas VH Front Robot AI; 2021; 8():702860. PubMed ID: 35127833 [TBL] [Abstract][Full Text] [Related]
15. Effects of stance control Sánchez-Manchola M; Arciniegas-Mayag L; Múnera M; Bourgain M; Provot T; Cifuentes CA Front Bioeng Biotechnol; 2023; 11():1021525. PubMed ID: 37101752 [No Abstract] [Full Text] [Related]
16. Fuzzy Adaptive Passive Control Strategy Design for Upper-Limb End-Effector Rehabilitation Robot. Hu Y; Meng J; Li G; Zhao D; Feng G; Zuo G; Liu Y; Zhang J; Shi C Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112385 [TBL] [Abstract][Full Text] [Related]
17. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. Domingo A; Lam T J Neuroeng Rehabil; 2014 Dec; 11():167. PubMed ID: 25516305 [TBL] [Abstract][Full Text] [Related]
18. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton. Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R Front Robot AI; 2019; 6():36. PubMed ID: 33501052 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of an Intelligent Algorithm Based on an Assist-as-Needed Controller for a Robot-Aided Gait Trainer (Lokomat) in Neurological Disorders: A Longitudinal Pilot Study. Laszlo C; Munari D; Maggioni S; Knechtle D; Wolf P; De Bon D Brain Sci; 2023 Apr; 13(4):. PubMed ID: 37190576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]