These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33500984)

  • 1. Evaluation and Analysis of Push-Pull Cable Actuation System Used for Powered Orthoses.
    Grosu S; Rodriguez-Guerrero C; Grosu V; Vanderborght B; Lefeber D
    Front Robot AI; 2018; 5():105. PubMed ID: 33500984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force and Torque Characterization in the Actuation of a Walking-Assistance, Cable-Driven Exosuit.
    Rodríguez Jorge D; Bermejo García J; Jayakumar A; Lorente Moreno R; Agujetas Ortiz R; Romero Sánchez F
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote Actuation Systems for Fully Wearable Assistive Devices: Requirements, Selection, and Optimization for Out-of-the-Lab Application of a Hand Exoskeleton.
    Dittli J; Hofmann UAT; Bützer T; Smit G; Lambercy O; Gassert R
    Front Robot AI; 2020; 7():596185. PubMed ID: 33585573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Analysis and Actuation Performance of a Push-Pull Dielectric Elastomer Actuator.
    Sun W; Zhao B; Zhang F
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the stiffness analysis of a cable driven leg exoskeleton.
    Sanjeevi NSS; Vashista V
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():455-460. PubMed ID: 28813862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-Planar Trajectory Tracking with a Novel 3DOF Cable Driven Lower Limb Rehabilitation Exoskeleton (C-LREX).
    Prasad R; El-Rich M; Awad MI; Agrawal SK; Khalaf K
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of the Cooperative Actuation in Hybrid Orthoses: A Theoretical Approach Based on Muscle Models.
    Romero-Sánchez F; Bermejo-García J; Barrios-Muriel J; Alonso FJ
    Front Neurorobot; 2019; 13():58. PubMed ID: 31417390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically-inspired soft exosuit.
    Asbeck AT; Dyer RJ; Larusson AF; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650455. PubMed ID: 24187272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A planar 3DOF robotic exoskeleton for rehabilitation and assessment.
    Ball SJ; Brown IE; Scott SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4024-7. PubMed ID: 18002882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an Active Cable-Driven, Force-Controlled Robotic System for Walking Rehabilitation.
    Fang J; Haldimann M; Marchal-Crespo L; Hunt KJ
    Front Neurorobot; 2021; 15():651177. PubMed ID: 34093158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies.
    Jamwal PK; Hussain S; Ghayesh MH
    Proc Inst Mech Eng H; 2020 May; 234(5):444-457. PubMed ID: 31916511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 17. Jointless structure and under-actuation mechanism for compact hand exoskeleton.
    In H; Cho KJ; Kim K; Lee B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975394. PubMed ID: 22275598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of push-pull system to control diesel particular matter inside a dead-end entry.
    Zheng Y; Thiruvengadam M; Lan H; Tien JC
    Int J Coal Sci Technol; 2015; 2():237-244. PubMed ID: 27069716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Framework for Determining the Performance and Requirements of Cable-Driven Mobile Lower Limb Rehabilitation Exoskeletons.
    Prasad R; El-Rich M; Awad MI; Hussain I; Jelinek HF; Huzaifa U; Khalaf K
    Front Bioeng Biotechnol; 2022; 10():920462. PubMed ID: 35795162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.
    Case JC; White EL; SunSpiral V; Kramer-Bottiglio R
    Soft Robot; 2018 Feb; 5(1):109-118. PubMed ID: 29412083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.