BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33500995)

  • 1. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-mode adaptive control strategy for a lower limb rehabilitation robot.
    Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T
    Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention and Detection Research of Intelligent Sports Rehabilitation under the Background of Artificial Intelligence.
    Huang Q; Wang F
    Appl Bionics Biomech; 2022; 2022():3347166. PubMed ID: 35572060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Trajectory Tracking of Wall-Climbing Robot on Cylindrical Tank Surface Using Backstepping Sliding-Mode Control.
    Xue J; Chen J; Stancu A; Wang X; Li J
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
    Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J
    Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer.
    Niu J; Yang Q; Wang X; Song R
    Front Neurol; 2017; 8():646. PubMed ID: 29255442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Arm Coordinated Control Strategy Based on Modified Sliding Mode Impedance Controller.
    Liu X; Xu X; Zhu Z; Jiang Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking position commanded NAO robot using nonlinear disturbance observer-based fixed-time terminal sliding mode.
    Farhat M; Kali Y; Saad M; Rahman MH; Lopez-Herrejon RE
    ISA Trans; 2024 Mar; 146():592-602. PubMed ID: 38151448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance Sliding-Mode Control Based on Stiffness Scheduling for Rehabilitation Robot Systems.
    Hu K; Ma Z; Zou S; Li J; Ding H
    Cyborg Bionic Syst; 2024; 5():0099. PubMed ID: 38827223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-in-the-Loop Robot Control for Human-Robot Collaboration: HUMAN INTENTION ESTIMATION AND SAFE TRAJECTORY TRACKING CONTROL FOR COLLABORATIVE TASKS.
    Dani AP; Salehi I; Rotithor G; Trombetta D; Ravichandar H
    IEEE Control Syst; 2020 Dec; 40(6):29-56. PubMed ID: 35002195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectory tracking control of 7-DOF redundant robot based on estimation of intention in physical human-robot interaction.
    Ye L; Xiong G; Zeng C; Zhang H
    Sci Prog; 2020; 103(3):36850420953642. PubMed ID: 32924809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor.
    Xia D; Cheng L; Yao Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.