These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33501024)
1. Attitude Stabilization of Spacecraft in Very Low Earth Orbit by Center-Of-Mass Shifting. Virgili-Llop J; Polat HC; Romano M Front Robot AI; 2019; 6():7. PubMed ID: 33501024 [TBL] [Abstract][Full Text] [Related]
2. Attitude-Orbit Coupled Control of Gravitational Wave Detection Spacecraft with Communication Delays. Zhang Y; Liu Y; Yang J; Lu Z; Zhang J Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991943 [TBL] [Abstract][Full Text] [Related]
3. Micro Satellite Orbital Boost by Electrodynamic Tethers. Yao P; Sands T Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442538 [TBL] [Abstract][Full Text] [Related]
4. In-Orbit Attitude Determination of the UVSQ-SAT CubeSat Using TRIAD and MEKF Methods. Finance A; Dufour C; Boutéraon T; Sarkissian A; Mangin A; Keckhut P; Meftah M Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770668 [TBL] [Abstract][Full Text] [Related]
5. Attitude-orbit coupled sliding mode tracking control for spacecraft formation with event-triggered transmission. Fan R; Chen X; Liu M; Cao X ISA Trans; 2022 May; 124():338-348. PubMed ID: 33243449 [TBL] [Abstract][Full Text] [Related]
6. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks. Zou AM; Dev Kumar K; Hou ZG IEEE Trans Neural Netw; 2010 Sep; 21(9):1457-71. PubMed ID: 20729168 [TBL] [Abstract][Full Text] [Related]
7. Fixed-time regulation of spacecraft orbit and attitude coordination with optimal actuation allocation using dual quaternion. Sun L; Huang Y; Fei H; Xiao B; Yeatman EM; Montazeri A; Wang Z Front Robot AI; 2023; 10():1138115. PubMed ID: 36866152 [TBL] [Abstract][Full Text] [Related]
8. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission. Huo M; Zhao J; Xie S; Qi N PLoS One; 2015; 10(5):e0125901. PubMed ID: 25950179 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit. El-Jaby S; Richardson RB Life Sci Space Res (Amst); 2015 Jul; 6():1-9. PubMed ID: 26256622 [TBL] [Abstract][Full Text] [Related]
10. Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance. Huang X; Duan G ISA Trans; 2020 Mar; 98():161-172. PubMed ID: 31495589 [TBL] [Abstract][Full Text] [Related]
11. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network. An-Min Zou ; Kumar KD; Zeng-Guang Hou ; Xi Liu IEEE Trans Syst Man Cybern B Cybern; 2011 Aug; 41(4):950-63. PubMed ID: 21266316 [TBL] [Abstract][Full Text] [Related]
12. Applied nonlinear control of spacecraft simulator with constraints on torque and momentum of reaction wheels. Jamshidi S; Mirzaei M; Malekzadeh M ISA Trans; 2023 Jul; 138():705-719. PubMed ID: 37037735 [TBL] [Abstract][Full Text] [Related]
13. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits. Chancellor JC; Auñon-Chancellor SM; Charles J Aerosp Med Hum Perform; 2018 Jan; 89(1):3-8. PubMed ID: 29233237 [TBL] [Abstract][Full Text] [Related]
14. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence. Dong H; Hu Q; Ma G ISA Trans; 2016 Mar; 61():87-94. PubMed ID: 26775087 [TBL] [Abstract][Full Text] [Related]
15. Attitude output feedback control for rigid spacecraft with finite-time convergence. Hu Q; Niu G ISA Trans; 2017 Sep; 70():173-186. PubMed ID: 28789773 [TBL] [Abstract][Full Text] [Related]
16. Neuro-fuzzy system based proportional derivative gain optimized attitude control of CubeSat under LEO perturbations. Shehzad MF; Asghar AB; Jaffery MH; Naveed K; Čonka Z Heliyon; 2023 Oct; 9(10):e20434. PubMed ID: 37810865 [TBL] [Abstract][Full Text] [Related]
17. Fixed-time attitude stabilization for a rigid spacecraft. Du H; Zhang J; Wu D; Zhu W; Li H; Chu Z ISA Trans; 2020 Mar; 98():263-270. PubMed ID: 31451232 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit. Stone WC; Witzgall C J Res Natl Inst Stand Technol; 2006; 111(2):143-59. PubMed ID: 27274926 [TBL] [Abstract][Full Text] [Related]
19. High altitude balloon testing of Arduino and environmental sensors for CubeSat prototype. Lay KS; Li L; Okutsu M HardwareX; 2022 Oct; 12():e00329. PubMed ID: 35770241 [TBL] [Abstract][Full Text] [Related]
20. On the use of a continuous thrust to find bounded planar trajectories at given altitudes in Low Earth Orbits. de Almeida AK; Piñeros JOM; Prado AFBA Sci Rep; 2020 May; 10(1):8728. PubMed ID: 32457391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]