These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33501038)

  • 1. Model-Based Control of Soft Actuators Using Learned Non-linear Discrete-Time Models.
    Hyatt P; Wingate D; Killpack MD
    Front Robot AI; 2019; 6():22. PubMed ID: 33501038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using First Principles for Deep Learning and Model-Based Control of Soft Robots.
    Johnson CC; Quackenbush T; Sorensen T; Wingate D; Killpack MD
    Front Robot AI; 2021; 8():654398. PubMed ID: 34017861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots.
    Li Y; Chen Y; Ren T; Li Y; Choi SH
    Soft Robot; 2018 Oct; 5(5):567-575. PubMed ID: 29924683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardware Sequencing of Inflatable Nonlinear Actuators for Autonomous Soft Robots.
    Gorissen B; Milana E; Baeyens A; Broeders E; Christiaens J; Collin K; Reynaerts D; De Volder M
    Adv Mater; 2019 Jan; 31(3):e1804598. PubMed ID: 30462860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pneumatic random-access memory for controlling soft robots.
    Hoang S; Karydis K; Brisk P; Grover WH
    PLoS One; 2021; 16(7):e0254524. PubMed ID: 34270580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network.
    Wang L; Lam J; Chen X; Li J; Zhang R; Su Y; Wang Z
    Soft Robot; 2023 Aug; 10(4):825-837. PubMed ID: 37001175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness Change for Reconfiguration of Inflated Beam Robots.
    Do BH; Wu S; Zhao RR; Okamura AM
    Soft Robot; 2024 Apr; ():. PubMed ID: 38683643
    [No Abstract]   [Full Text] [Related]  

  • 10. Recent Developments of Actuation Mechanisms for Continuum Robots: A Review.
    Seleem IA; El-Hussieny H; Ishii H
    Int J Control Autom Syst; 2023; 21(5):1592-1609. PubMed ID: 37151813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model Reference Predictive Adaptive Control for Large-Scale Soft Robots.
    Hyatt P; Johnson CC; Killpack MD
    Front Robot AI; 2020; 7():558027. PubMed ID: 33501321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latent Representation-Based Learning Controller for Pneumatic and Hydraulic Dual Actuation of Pressure-Driven Soft Actuators.
    Sugiyama T; Kutsuzawa K; Owaki D; Hayashibe M
    Soft Robot; 2024 Feb; 11(1):105-117. PubMed ID: 37590488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An End-to-End Dynamic Posture Perception Method for Soft Actuators Based on Distributed Thin Flexible Porous Piezoresistive Sensors.
    Shu J; Wang J; Cheng KC; Yeung LF; Li Z; Tong RK
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Geometric Approach towards Inverse Kinematics of Soft Extensible Pneumatic Actuators Intended for Trajectory Tracking.
    Keyvanara M; Goshtasbi A; Kuling IA
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical soft robots: current status and perspective.
    Ashuri T; Armani A; Jalilzadeh Hamidi R; Reasnor T; Ahmadi S; Iqbal K
    Biomed Eng Lett; 2020 Aug; 10(3):369-385. PubMed ID: 32864173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blower-Powered Soft Inflatable Joints for Physical Human-Robot Interaction.
    Niiyama R; Seong YA; Kawahara Y; Kuniyoshi Y
    Front Robot AI; 2021; 8():720683. PubMed ID: 34504872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of Soft Pneumatic Actuators with Different Orientation Angles Using Echo State Networks for Irregular Time Series Data.
    Youssef SM; Soliman M; Saleh MA; Mousa MA; Elsamanty M; Radwan AG
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hardware Methods for Onboard Control of Fluidically Actuated Soft Robots.
    McDonald K; Ranzani T
    Front Robot AI; 2021; 8():720702. PubMed ID: 34485392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional recurrent learning of inverse dynamic models for robots with elastic joints: a real-time real-world implementation.
    Valencia-Vidal B; Ros E; Abadía I; Luque NR
    Front Neurorobot; 2023; 17():1166911. PubMed ID: 37396028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon fibre based flexible piezoresistive composites to empower inherent sensing capabilities for soft actuators.
    Yan X; Bowen CR; Yuan C; Hao Z; Pan M
    Soft Matter; 2019 Oct; 15(40):8001-8011. PubMed ID: 31468049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.