BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33501052)

  • 1. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton.
    Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R
    Front Robot AI; 2019; 6():36. PubMed ID: 33501052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Human Gait Phases by Using Bèzier Curves to Generate Walking Trajectories for Lower-Limb Exoskeletons.
    Zuccatti M; Zinni G; Maludrottu S; Pericu V; Laffranchi M; Del Prete A; De Michieli L; Vassallo C
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Trajectory and Event Prediction from State Estimation for Exoskeletons During Gait.
    Tanghe K; De Groote F; Lefeber D; De Schutter J; Aertbelien E
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):211-220. PubMed ID: 31675336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individualized Three-Dimensional Gait Pattern Generator for Lower Limbs Rehabilitation Robots.
    Romero-Sorozabal P; Delgado-Oleas G; Gutierrez A; Rocon E
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed-dependent reference joint trajectory generation for robotic gait support.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Biomech; 2014 Apr; 47(6):1447-58. PubMed ID: 24529911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot trajectory approximation using the pendulum model of walking.
    Fang J; Vuckovic A; Galen S; Conway BA; Hunt KJ
    Med Biol Eng Comput; 2014 Jan; 52(1):45-52. PubMed ID: 24057114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke.
    French MA; Koller C; Arch ES
    J Biomech; 2020 Jan; 99():109481. PubMed ID: 31718818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to walk with a robotic ankle exoskeleton.
    Gordon KE; Ferris DP
    J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional ankle kinematics of the full gait cycle in patients with chronic ankle instability: A case-control study.
    Piming G; Yaming Y; Hai S; Xia L; Xiaobing L
    Heliyon; 2023 Nov; 9(11):e22265. PubMed ID: 38053855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking With a Robotic Exoskeleton Does Not Mimic Natural Gait: A Within-Subjects Study.
    Swank C; Wang-Price S; Gao F; Almutairi S
    JMIR Rehabil Assist Technol; 2019 Jan; 6(1):e11023. PubMed ID: 31344681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure.
    Yang W; Zhang J; Zhang S; Yang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury.
    Wu AR; Dzeladini F; Brug TJH; Tamburella F; Tagliamonte NL; van Asseldonk EHF; van der Kooij H; Ijspeert AJ
    Front Neurorobot; 2017; 11():30. PubMed ID: 28676752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An individualized gait pattern prediction model based on the least absolute shrinkage and selection operator regression.
    Hu X; Shen F; Zhao Z; Qu X; Ye J
    J Biomech; 2020 Nov; 112():110052. PubMed ID: 33039924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.