These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33501080)

  • 1. Characterization of Flagellar Propulsion of Soft Microrobotic Sperm in a Viscous Heterogeneous Medium.
    Khalil ISM; Klingner A; Hamed Y; Magdanz V; Toubar M; Misra S
    Front Robot AI; 2019; 6():65. PubMed ID: 33501080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable switching between planar and helical flagellar swimming of a soft robotic sperm.
    Khalil ISM; Tabak AF; Abou Seif M; Klingner A; Sitti M
    PLoS One; 2018; 13(11):e0206456. PubMed ID: 30388132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments.
    Leshansky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051911. PubMed ID: 20365010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Segmented Magnetization on the Flagellar Propulsion of Sperm-Templated Microrobots.
    Magdanz V; Vivaldi J; Mohanty S; Klingner A; Vendittelli M; Simmchen J; Misra S; Khalil ISM
    Adv Sci (Weinh); 2021 Apr; 8(8):2004037. PubMed ID: 33898186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory.
    Friedrich BM; Riedel-Kruse IH; Howard J; Jülicher F
    J Exp Biol; 2010 Apr; 213(Pt 8):1226-34. PubMed ID: 20348333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers.
    Khalil ISM; Tabak AF; Hamed Y; Mitwally ME; Tawakol M; Klingner A; Sitti M
    Adv Sci (Weinh); 2018 Feb; 5(2):1700461. PubMed ID: 29619299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility.
    Simons J; Olson S; Cortez R; Fauci L
    J Theor Biol; 2014 Aug; 354():81-94. PubMed ID: 24685890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flagellum-driven cargoes: Influence of cargo size and the flagellum-cargo attachment geometry.
    Bae AJ; Ahmad R; Bodenschatz E; Pumir A; Gholami A
    PLoS One; 2023; 18(3):e0279940. PubMed ID: 36897856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired magnetic swimming microrobots for biomedical applications.
    Peyer KE; Zhang L; Nelson BJ
    Nanoscale; 2013 Feb; 5(4):1259-72. PubMed ID: 23165991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sperm Cell Driven Microrobots-Emerging Opportunities and Challenges for Biologically Inspired Robotic Design.
    Singh AV; Ansari MHD; Mahajan M; Srivastava S; Kashyap S; Dwivedi P; Pandit V; Katha U
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-adaptive and efficient propulsion of Ray sperms at different viscosities enabled by heterogeneous dual helixes.
    Wang P; Al Azad MAR; Yang X; Martelli PR; Cheung KY; Shi J; Shen Y
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are there intracellular Ca2+ oscillations correlated with flagellar beating in human sperm? A three vs. two-dimensional analysis.
    Corkidi G; Montoya F; Hernández-Herrera P; Ríos-Herrera WA; Müller MF; Treviño CL; Darszon A
    Mol Hum Reprod; 2017 Sep; 23(9):583-593. PubMed ID: 28911211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent three-dimensional sperm motility: coupling calcium dynamics and preferred curvature in a Kirchhoff rod model.
    Carichino L; Olson SD
    Math Med Biol; 2019 Dec; 36(4):439-469. PubMed ID: 30325451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical exploration on buckling instability for directional control in flagellar propulsion.
    Huang W; Jawed MK
    Soft Matter; 2020 Jan; 16(3):604-613. PubMed ID: 31872849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High shear rate propulsion of acoustic microrobots in complex biological fluids.
    Aghakhani A; Pena-Francesch A; Bozuyuk U; Cetin H; Wrede P; Sitti M
    Sci Adv; 2022 Mar; 8(10):eabm5126. PubMed ID: 35275716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propulsion of microorganisms by a helical flagellum.
    Rodenborn B; Chen CH; Swinney HL; Liu B; Zhang HP
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):E338-47. PubMed ID: 23319607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Collective Behavior in Dynamically Self-Assembled Mobile Microrobotic Swarms.
    Yigit B; Alapan Y; Sitti M
    Adv Sci (Weinh); 2019 Mar; 6(6):1801837. PubMed ID: 30937264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteria-inspired magnetically actuated rod-like soft robot in viscous fluids.
    Bhattacharjee A; Jabbarzadeh M; Kararsiz G; Fu HC; Kim MJ
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35926485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid sperm capture: high-throughput flagellar waveform analysis.
    Gallagher MT; Cupples G; Ooi EH; Kirkman-Brown JC; Smith DJ
    Hum Reprod; 2019 Jul; 34(7):1173-1185. PubMed ID: 31170729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Structural Design and Motion Characteristics of Magnetic Helical Soft Microrobots with Drug-Carrying Function.
    Gao Q; Lin T; Liu Z; Chen Z; Chen Z; Hu C; Shen T
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.