These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33501084)

  • 1. Adaptation and Transfer of Robot Motion Policies for Close Proximity Human-Robot Interaction.
    Hoang Dinh K; Oguz OS; Elsayed M; Wollherr D
    Front Robot AI; 2019; 6():69. PubMed ID: 33501084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imposing Motion Variability for Ergonomic Human-Robot Collaboration.
    Zolotas M; Luo R; Bazzi S; Saha D; Mabulu K; Kloeckl K; Padır T
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):123-134. PubMed ID: 38498062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.
    Lasota PA; Shah JA
    Hum Factors; 2015 Feb; 57(1):21-33. PubMed ID: 25790568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A data-driven approach for motion planning of industrial robots controlled by high-level motion commands.
    Hou S; Bdiwi M; Rashid A; Krusche S; Ihlenfeldt S
    Front Robot AI; 2022; 9():1030668. PubMed ID: 36714803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-in-the-Loop Robot Control for Human-Robot Collaboration: HUMAN INTENTION ESTIMATION AND SAFE TRAJECTORY TRACKING CONTROL FOR COLLABORATIVE TASKS.
    Dani AP; Salehi I; Rotithor G; Trombetta D; Ravichandar H
    IEEE Control Syst; 2020 Dec; 40(6):29-56. PubMed ID: 35002195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FMG- and RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collaboration.
    Anvaripour M; Khoshnam M; Menon C; Saif M
    Front Robot AI; 2020; 7():573096. PubMed ID: 33501334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Socially Aware Robot Obstacle Avoidance Considering Human Intention and Preferences.
    Smith T; Chen Y; Hewitt N; Hu B; Gu Y
    Int J Soc Robot; 2023; 15(4):661-678. PubMed ID: 34249182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human motion behavior while interacting with an industrial robot.
    Bortot D; Ding H; Antonopolous A; Bengler K
    Work; 2012; 41 Suppl 1():1699-707. PubMed ID: 22316958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps.
    Bowen C; Ye G; Alterovitz R
    IEEE Trans Autom Sci Eng; 2015 Jan; 12(1):171-182. PubMed ID: 26279642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path Planning for Obstacle Avoidance of Robot Arm Based on Improved Potential Field Method.
    Xia X; Li T; Sang S; Cheng Y; Ma H; Zhang Q; Yang K
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a Long Short-Term Memory Neural Network-Based Algorithm for Dynamic Obstacle Avoidance.
    Mulás-Tejeda E; Gómez-Espinosa A; Escobedo Cabello JA; Cantoral-Ceballos JA; Molina-Leal A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smooth leader or sharp follower? Playing the mirror game with a robot.
    Kashi S; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):147-159. PubMed ID: 29036853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation.
    Torres LG; Kuntz A; Gilbert HB; Swaney PJ; Hendrick RJ; Webster RJ; Alterovitz R
    IEEE Int Conf Robot Autom; 2015 May; 2015():2361-2367. PubMed ID: 26413381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic Dual-Space Fusion for Real-Time Human-Robot Interaction.
    Li Y; Wu J; Chen X; Guan Y
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guided Stochastic Optimization for Motion Planning.
    Magyar B; Tsiogkas N; Brito B; Patel M; Lane D; Wang S
    Front Robot AI; 2019; 6():105. PubMed ID: 33501120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse control for humanoid robot task recognition.
    Hak S; Mansard N; Stasse O; Laumond JP
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1524-37. PubMed ID: 22552575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.