These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33501138)

  • 1. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving.
    Eppe M; Nguyen PDH; Wermter S
    Front Robot AI; 2019; 6():123. PubMed ID: 33501138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sampling Rate Decay in Hindsight Experience Replay for Robot Control.
    Vecchietti LF; Seo M; Har D
    IEEE Trans Cybern; 2022 Mar; 52(3):1515-1526. PubMed ID: 32452788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.
    Tamosiunaite M; Asfour T; Wörgötter F
    Biol Cybern; 2009 Mar; 100(3):249-60. PubMed ID: 19229556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Cognitive Architecture for Robot Learning of Action and Language.
    Miyazawa K; Horii T; Aoki T; Nagai T
    Front Robot AI; 2019; 6():131. PubMed ID: 33501146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Robot Path Planning Method Based on Deep Reinforcement Learning.
    Han H; Wang J; Kuang L; Han X; Xue H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors.
    Parvin DE; McDougle SD; Taylor JA; Ivry RB
    J Neurosci; 2018 May; 38(19):4521-4530. PubMed ID: 29650698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Reinforcement Learning With Universal Policies for Multistep Robotic Manipulation.
    Yang X; Ji Z; Wu J; Lai YK; Wei C; Liu G; Setchi R
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4727-4741. PubMed ID: 33646961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor-Critic with Hindsight Experience Replay.
    Prianto E; Kim M; Park JH; Bae JH; Kim JS
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Offline replay supports planning in human reinforcement learning.
    Momennejad I; Otto AR; Daw ND; Norman KA
    Elife; 2018 Dec; 7():. PubMed ID: 30547886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M; Lee SY; Hong JS; Kwon NK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Goal-Directed Navigation Through Combining Learning Based Global and Local Planners.
    Zhou X; Gao Y; Guan L
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks.
    Veiga F; Akrour R; Peters J
    Front Robot AI; 2020; 7():521448. PubMed ID: 33501302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A formal methods approach to interpretable reinforcement learning for robotic planning.
    Li X; Serlin Z; Yang G; Belta C
    Sci Robot; 2019 Dec; 4(37):. PubMed ID: 33137718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Channel Interactive Reinforcement Learning for Sequential Tasks.
    Koert D; Kircher M; Salikutluk V; D'Eramo C; Peters J
    Front Robot AI; 2020; 7():97. PubMed ID: 33501264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ToyArchitecture: Unsupervised learning of interpretable models of the environment.
    Vítků J; Dluhoš P; Davidson J; Nikl M; Andersson S; Paška P; Šinkora J; Hlubuček P; Stránský M; Hyben M; Poliak M; Feyereisl J; Rosa M
    PLoS One; 2020; 15(5):e0230432. PubMed ID: 32421693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AHEGC: Adaptive Hindsight Experience Replay With Goal-Amended Curiosity Module for Robot Control.
    Zeng H; Zhang P; Li F; Lin C; Zhou J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37527323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.