These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33501150)

  • 41. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Attention Based Visual Analysis for Fast Grasp Planning With a Multi-Fingered Robotic Hand.
    Deng Z; Gao G; Frintrop S; Sun F; Zhang C; Zhang J
    Front Neurorobot; 2019; 13():60. PubMed ID: 31417391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An analysis of the input-output properties of neuroprosthetic hand grasps.
    Memberg WD; Crago PE
    J Rehabil Res Dev; 2000; 37(1):11-21. PubMed ID: 10847568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Too much anticipation? Large anticipatory adjustments of grasping movements to minimal object manipulations.
    Herbort O
    Hum Mov Sci; 2015 Aug; 42():100-16. PubMed ID: 26004123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Failure Handling of Robotic Pick and Place Tasks With Multimodal Cues Under Partial Object Occlusion.
    Zhu F; Wang L; Wen Y; Yang L; Pan J; Wang Z; Wang W
    Front Neurorobot; 2021; 15():570507. PubMed ID: 33762921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CLASH-A Compliant Sensorized Hand for Handling Delicate Objects.
    Friedl W; Roa MA
    Front Robot AI; 2019; 6():138. PubMed ID: 33501153
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modelling the structure of object-independent human affordances of approaching to grasp for robotic hands.
    Cotugno G; Konstantinova J; Althoefer K; Nanayakkara T
    PLoS One; 2018; 13(12):e0208228. PubMed ID: 30586407
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DGCM-Net: Dense Geometrical Correspondence Matching Network for Incremental Experience-Based Robotic Grasping.
    Patten T; Park K; Vincze M
    Front Robot AI; 2020; 7():120. PubMed ID: 33501286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep Learning Method for Grasping Novel Objects Using Dexterous Hands.
    Shang W; Song F; Zhao Z; Gao H; Cong S; Li Z
    IEEE Trans Cybern; 2022 May; 52(5):2750-2762. PubMed ID: 33001823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Human Grasp Mechanism Understanding, Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots.
    Zheng W; Guo N; Zhang B; Zhou J; Tian G; Xiong Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890919
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A soft-contact and wrench based approach to study grasp planning and execution.
    Singh T; Ambike S
    J Biomech; 2015 Nov; 48(14):3961-7. PubMed ID: 26475219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hand synergies during reach-to-grasp.
    Mason CR; Gomez JE; Ebner TJ
    J Neurophysiol; 2001 Dec; 86(6):2896-910. PubMed ID: 11731546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Learning to grasp and extract affordances: the Integrated Learning of Grasps and Affordances (ILGA) model.
    Bonaiuto J; Arbib MA
    Biol Cybern; 2015 Dec; 109(6):639-69. PubMed ID: 26585965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robotic Pick-and-Place With Uncertain Object Instance Segmentation and Shape Completion.
    Gualtieri M; Platt R
    IEEE Robot Autom Lett; 2021 Mar; 6(2):1753-1760. PubMed ID: 33834114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HANDS: a multimodal dataset for modeling toward human grasp intent inference in prosthetic hands.
    Han M; Günay SY; Schirner G; Padır T; Erdoğmuş D
    Intell Serv Robot; 2020 Jan; 13(1):179-185. PubMed ID: 33312264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers.
    Hao Y; Visell Y
    Front Robot AI; 2021; 8():632006. PubMed ID: 34307466
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional classification of grasp strategies used by hemiplegic patients.
    García Álvarez A; Roby-Brami A; Robertson J; Roche N
    PLoS One; 2017; 12(11):e0187608. PubMed ID: 29125855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes.
    Li T; Wang F; Ru C; Jiang Y; Li J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.