These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33501150)

  • 61. An Electro-Oculogram Based Vision System for Grasp Assistive Devices-A Proof of Concept Study.
    Roy R; Mahadevappa M; Nazarpour K
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34282770
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Automatic grasp planning for visual-servo controlled robotic manipulators.
    Janabi-Sharifi F; Wilson WJ
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(5):693-711. PubMed ID: 18255988
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Grasping objects with environmentally induced position uncertainty.
    Christopoulos VN; Schrater PR
    PLoS Comput Biol; 2009 Oct; 5(10):e1000538. PubMed ID: 19834543
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Habit outweighs planning in grasp selection for object manipulation.
    Herbort O; Mathew H; Kunde W
    Cogn Psychol; 2017 Feb; 92():127-140. PubMed ID: 27951435
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The development of the grasp height effect as a measure of efficient action planning in children.
    Jovanovic B; Schwarzer G
    J Exp Child Psychol; 2017 Jan; 153():74-82. PubMed ID: 27701010
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.
    Spiers AJ; Liarokapis MV; Calli B; Dollar AM
    IEEE Trans Haptics; 2016; 9(2):207-20. PubMed ID: 26829804
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vision-based grasp learning of an anthropomorphic hand-arm system in a synergy-based control framework.
    Ficuciello F; Migliozzi A; Laudante G; Falco P; Siciliano B
    Sci Robot; 2019 Jan; 4(26):. PubMed ID: 33137760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Representational Neural Mapping of Dexterous Grasping Before Lifting in Humans.
    Marneweck M; Grafton ST
    J Neurosci; 2020 Mar; 40(13):2708-2716. PubMed ID: 32015024
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study.
    Przybylski Ł; Króliczak G
    J Int Neuropsychol Soc; 2017 Feb; 23(2):108-120. PubMed ID: 28205496
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Passive reach and grasp with functional electrical stimulation and robotic arm support.
    Westerveld AJ; Schouten AC; Veltink PH; van der Kooij H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3085-9. PubMed ID: 25570643
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Postural Hand Synergies during Environmental Constraint Exploitation.
    Della Santina C; Bianchi M; Averta G; Ciotti S; Arapi V; Fani S; Battaglia E; Catalano MG; Santello M; Bicchi A
    Front Neurorobot; 2017; 11():41. PubMed ID: 28900393
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Automatic grasp imitation following action observation affects estimation of intrinsic object properties.
    Gianelli C; Dalla Volta R; Barbieri F; Gentilucci M
    Brain Res; 2008 Jul; 1218():166-80. PubMed ID: 18514170
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The observation of manual grasp actions affects the control of speech: a combined behavioral and Transcranial Magnetic Stimulation study.
    Gentilucci M; Campione GC; Dalla Volta R; Bernardis P
    Neuropsychologia; 2009 Dec; 47(14):3190-202. PubMed ID: 19654016
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modeling and Simulation of Robotic Grasping in Simulink Through Simscape Multibody.
    Pozzi M; Achilli GM; Valigi MC; Malvezzi M
    Front Robot AI; 2022; 9():873558. PubMed ID: 35712551
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stability of perception of the hand's aperture in a grasp.
    Butler AA; Héroux ME; van Eijk T; Gandevia SC
    J Physiol; 2019 Dec; 597(24):5973-5984. PubMed ID: 31671476
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tactile Model O: Fabrication and Testing of a 3D-Printed, Three-Fingered Tactile Robot Hand.
    James JW; Church A; Cramphorn L; Lepora NF
    Soft Robot; 2021 Oct; 8(5):594-610. PubMed ID: 33337925
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The hand grasps the center, while the eyes saccade to the top of novel objects.
    Juravle G; Velasco C; Salgado-Montejo A; Spence C
    Front Psychol; 2015; 6():633. PubMed ID: 26052291
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Passively Conforming Soft Robotic Gripper with Three-Dimensional Negative Bending Stiffness Fingers.
    Chu AH; Cheng T; Muralt A; Onal CD
    Soft Robot; 2023 Jun; 10(3):556-567. PubMed ID: 36854140
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory.
    Derbyshire N; Ellis R; Tucker M
    Acta Psychol (Amst); 2006 May; 122(1):74-98. PubMed ID: 16376844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.