These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33501162)
1. Hands in the Real World. Negrello F; Stuart HS; Catalano MG Front Robot AI; 2019; 6():147. PubMed ID: 33501162 [TBL] [Abstract][Full Text] [Related]
2. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots. Elangovan N; Chang CM; Gao G; Liarokapis M Front Robot AI; 2022; 9():808154. PubMed ID: 35546901 [TBL] [Abstract][Full Text] [Related]
3. Soft Grippers for Automatic Crop Harvesting: A Review. Navas E; Fernández R; Sepúlveda D; Armada M; Gonzalez-de-Santos P Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920353 [TBL] [Abstract][Full Text] [Related]
4. Detachable Robotic Grippers for Human-Robot Collaboration. Iqbal Z; Pozzi M; Prattichizzo D; Salvietti G Front Robot AI; 2021; 8():644532. PubMed ID: 34222348 [TBL] [Abstract][Full Text] [Related]
5. The JamHand: Dexterous Manipulation with Minimal Actuation. Amend J; Lipson H Soft Robot; 2017 Mar; 4(1):70-80. PubMed ID: 29182098 [TBL] [Abstract][Full Text] [Related]
6. On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands. Chang CM; Gerez L; Elangovan N; Zisimatos A; Liarokapis M Front Neurorobot; 2019; 13():91. PubMed ID: 31787889 [TBL] [Abstract][Full Text] [Related]
7. Trends of Human-Robot Collaboration in Industry Contexts: Handover, Learning, and Metrics. Castro A; Silva F; Santos V Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203766 [TBL] [Abstract][Full Text] [Related]
8. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization. Deng Z; Jonetzko Y; Zhang L; Zhang J Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193 [TBL] [Abstract][Full Text] [Related]
9. Sensing, Actuating, and Interacting Through Passive Body Dynamics: A Framework for Soft Robotic Hand Design. Gilday K; Hughes J; Iida F Soft Robot; 2023 Feb; 10(1):159-173. PubMed ID: 35708594 [TBL] [Abstract][Full Text] [Related]
10. Human-Robot Interaction: Status and Challenges. Sheridan TB Hum Factors; 2016 Jun; 58(4):525-32. PubMed ID: 27098262 [TBL] [Abstract][Full Text] [Related]
11. A bio-inspired force control for cyclic manipulation of prosthetic hands. Ciancio AL; Barone R; Zollo L; Carpino G; Davalli A; Sacchetti R; Guglielmelli E Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4824-7. PubMed ID: 26737373 [TBL] [Abstract][Full Text] [Related]
12. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods. Li Y; Wang P; Li R; Tao M; Liu Z; Qiao H Front Neurorobot; 2022; 16():843267. PubMed ID: 35574228 [TBL] [Abstract][Full Text] [Related]
14. Blocks World of Touch: Exploiting the Advantages of All-Around Finger Sensing in Robot Grasping. Gomes DF; Lin Z; Luo S Front Robot AI; 2020; 7():541661. PubMed ID: 33501310 [TBL] [Abstract][Full Text] [Related]
15. Hand-Object Interaction: From Human Demonstrations to Robot Manipulation. Carfì A; Patten T; Kuang Y; Hammoud A; Alameh M; Maiettini E; Weinberg AI; Faria D; Mastrogiovanni F; Alenyà G; Natale L; Perdereau V; Vincze M; Billard A Front Robot AI; 2021; 8():714023. PubMed ID: 34660702 [TBL] [Abstract][Full Text] [Related]
16. Characterizing Continuous Manipulation Families for Dexterous Soft Robot Hands. Sun J; King JP; Pollard NS Front Robot AI; 2021; 8():645290. PubMed ID: 33928130 [TBL] [Abstract][Full Text] [Related]
18. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Melnik A; Lach L; Plappert M; Korthals T; Haschke R; Ritter H Front Robot AI; 2021; 8():538773. PubMed ID: 34268337 [TBL] [Abstract][Full Text] [Related]