These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33501235)

  • 1. Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios.
    Camurri M; Ramezani M; Nobili S; Fallon M
    Front Robot AI; 2020; 7():68. PubMed ID: 33501235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sensor Fusion Method for Pose Estimation of C-Legged Robots.
    De León J; Cebolla R; Barrientos A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
    Song Y; Nuske S; Scherer S
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28025524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marked-LIEO: Visual Marker-Aided LiDAR/IMU/Encoder Integrated Odometry.
    Chen B; Zhao H; Zhu R; Hu Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-based feature tracking in a visual inertial odometry framework.
    Ribeiro-Gomes J; Gaspar J; Bernardino A
    Front Robot AI; 2023; 10():994488. PubMed ID: 36866151
    [No Abstract]   [Full Text] [Related]  

  • 6. VINS-MKF:A Tightly-Coupled Multi-Keyframe Visual-Inertial Odometry for Accurate and Robust State Estimation.
    Zhang C; Liu Y; Wang F; Xia Y; Zhang W
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echo State Networks for Estimating Exteroceptive Conditions From Proprioceptive States in Quadruped Robots.
    Calandra M; Patanè L; Sun T; Arena P; Manoonpong P
    Front Neurorobot; 2021; 15():655330. PubMed ID: 34497502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Lidar-Inertial Odometry with Ground Condition Perception and Optimization Algorithm for UGV.
    Zhao Z; Zhang Y; Shi J; Long L; Lu Z
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Loosely Coupled Extended Kalman Filter Algorithm for Agricultural Scene-Based Multi-Sensor Fusion.
    Lv M; Wei H; Fu X; Wang W; Zhou D
    Front Plant Sci; 2022; 13():849260. PubMed ID: 35548311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACK-MSCKF: Tightly-Coupled Ackermann Multi-State Constraint Kalman Filter for Autonomous Vehicle Localization.
    Ma F; Shi J; Yang Y; Li J; Dai K
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31694304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Stereo Visual Inertial Navigation System Based on Multi-Stage Outlier Removal in Dynamic Environments.
    Nam DV; Gon-Woo K
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Strong Tracking Mixed-Degree Cubature Kalman Filter Method and Its Application in a Quadruped Robot.
    Liu J; Wang P; Zha F; Guo W; Jiang Z; Sun L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion.
    Du H; Wang W; Xu C; Xiao R; Sun C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Enhanced Hybrid Visual-Inertial Odometry System for Indoor Mobile Robot.
    Liu Y; Zhao C; Ren M
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odometry and laser scanner fusion based on a discrete extended Kalman Filter for robotic platooning guidance.
    Espinosa F; Santos C; Marrón-Romera M; Pizarro D; Valdés F; Dongil J
    Sensors (Basel); 2011; 11(9):8339-57. PubMed ID: 22164079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Flexible Multimodal Sole Sensor for Legged Robot Sensing Complex Ground Information during Locomotion.
    Xu Y; Wang Z; Hao W; Zhao W; Lin W; Jin B; Ding N
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient 3D Lidar Odometry Based on Planar Patches.
    Galeote-Luque A; Ruiz-Sarmiento JR; Gonzalez-Jimenez J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESPEE: Event-Based Sensor Pose Estimation Using an Extended Kalman Filter.
    Colonnier F; Della Vedova L; Orchard G
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.