BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33501244)

  • 1. Muscles Reduce Neuronal Information Load: Quantification of Control Effort in Biological vs. Robotic Pointing and Walking.
    Haeufle DFB; Wochner I; Holzmüller D; Driess D; Günther M; Schmitt S
    Front Robot AI; 2020; 7():77. PubMed ID: 33501244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying control effort of biological and technical movements: an information-entropy-based approach.
    Haeufle DF; Günther M; Wunner G; Schmitt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012716. PubMed ID: 24580266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A geometry- and muscle-based control architecture for synthesising biological movement.
    Walter JR; Günther M; Haeufle DFB; Schmitt S
    Biol Cybern; 2021 Feb; 115(1):7-37. PubMed ID: 33590348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological Computation Increases From Lower- to Higher-Level of Biological Motor Control Hierarchy.
    Haeufle DFB; Stollenmaier K; Heinrich I; Schmitt S; Ghazi-Zahedi K
    Front Robot AI; 2020; 7():511265. PubMed ID: 33501299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimal control strategy for hybrid actuator systems: Application to an artificial muscle with electric motor assist.
    Ishihara K; Morimoto J
    Neural Netw; 2018 Mar; 99():92-100. PubMed ID: 29414537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hip torque during step-to-step transition on center-of-mass dynamics during human walking examined with numerical simulation.
    Hao M; Chen K; Fu C
    J Biomech; 2019 Jun; 90():33-39. PubMed ID: 31047697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is equilibrium point control feasible for fast goal-directed single-joint movements?
    Kistemaker DA; Van Soest AJ; Bobbert MF
    J Neurophysiol; 2006 May; 95(5):2898-912. PubMed ID: 16436480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control variables and proprioceptive feedback in fast single-joint movement.
    Levin MF; Lamarre Y; Feldman AG
    Can J Physiol Pharmacol; 1995 Feb; 73(2):316-30. PubMed ID: 7621370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.
    Otten A; van Vuuren W; Stienen A; van Asseldonk E; Schouten A; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975456. PubMed ID: 22275654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance.
    Vette AH; Masani K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Precise application of Traditional Chinese Medicine in minimally-invasive techniques].
    Dong FH
    Zhongguo Gu Shang; 2018 Jun; 31(6):493-496. PubMed ID: 29945400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-Free Control of Movement in a Tendon-Driven Limb via a Modified Genetic Algorithm.
    Marjaninejad A; Annigeri R; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1767-1770. PubMed ID: 30440737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.