BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 33501291)

  • 1. Passive Brain-Computer Interfaces for Enhanced Human-Robot Interaction.
    Alimardani M; Hiraki K
    Front Robot AI; 2020; 7():125. PubMed ID: 33501291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing and computing humans by means of the brain using Brain-Computer Interfaces - understanding the user - previous evidence, self-relevance and the user's self-concept as potential superordinate human factors of relevance.
    Herbert C
    Front Hum Neurosci; 2023; 17():1286895. PubMed ID: 38435127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classifying human emotions in HRI: applying global optimization model to EEG brain signals.
    Staffa M; D'Errico L; Sansalone S; Alimardani M
    Front Neurorobot; 2023; 17():1191127. PubMed ID: 37881515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 5. Towards an architecture of a hybrid BCI based on SSVEP-BCI and passive-BCI.
    Cotrina A; Benevides A; Ferreira A; Bastos T; Castillo J; Menezes ML; Pereira C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1342-5. PubMed ID: 25570215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges.
    Yadav D; Yadav S; Veer K
    J Neurosci Methods; 2020 Dec; 346():108918. PubMed ID: 32853592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal analysis of error-related brain activity in active and passive brain-computer interfaces.
    Mousavi M; de Sa VR
    Brain Comput Interfaces (Abingdon); 2019; 6(4):118-127. PubMed ID: 33094110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.
    Zander TO; Kothe C
    J Neural Eng; 2011 Apr; 8(2):025005. PubMed ID: 21436512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of brain-computer interfaces to the control of robotic and prosthetic arms.
    Vilela M; Hochberg LR
    Handb Clin Neurol; 2020; 168():87-99. PubMed ID: 32164870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on brain-computer interface technologies in healthcare.
    Karikari E; Koshechkin KA
    Biophys Rev; 2023 Oct; 15(5):1351-1358. PubMed ID: 37974976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceptability Study of A3-K3 Robotic Architecture for a Neurorobotics Painting.
    Tramonte S; Sorbello R; Guger C; Chella A
    Front Neurorobot; 2018; 12():81. PubMed ID: 30687057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface for robot control with eye artifacts for assistive applications.
    Karas K; Pozzi L; Pedrocchi A; Braghin F; Roveda L
    Sci Rep; 2023 Oct; 13(1):17512. PubMed ID: 37845318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.
    Leeb R; Perdikis S; Tonin L; Biasiucci A; Tavella M; Creatura M; Molina A; Al-Khodairy A; Carlson T; Millán JD
    Artif Intell Med; 2013 Oct; 59(2):121-32. PubMed ID: 24119870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Classification of Both Mental Workload and Stress Level Suitable for an Online Passive Brain-Computer Interface.
    Bagheri M; Power SD
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study.
    Holz EM; Botrel L; Kaufmann T; Kübler A
    Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S16-26. PubMed ID: 25721543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Low-Complexity Brain-Computer Interface for High-Complexity Robot Swarm Control.
    Canal G; Diaz-Mercado Y; Egerstedt M; Rozell C
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1816-1825. PubMed ID: 37015133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurofeedback Therapy for Enhancing Visual Attention: State-of-the-Art and Challenges.
    Ordikhani-Seyedlar M; Lebedev MA; Sorensen HB; Puthusserypady S
    Front Neurosci; 2016; 10():352. PubMed ID: 27536212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Personalized Brain-Computer Interface and Its Applications.
    Ma Y; Gong A; Nan W; Ding P; Wang F; Fu Y
    J Pers Med; 2022 Dec; 13(1):. PubMed ID: 36675707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms.
    Athanasiou A; Xygonakis I; Pandria N; Kartsidis P; Arfaras G; Kavazidi KR; Foroglou N; Astaras A; Bamidis PD
    Biomed Res Int; 2017; 2017():5708937. PubMed ID: 28948168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.