BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 33501299)

  • 1. Quantum Brain Dynamics and Virtual Reality.
    Nishiyama A; Tanaka S; Tuszynski JA
    Biosystems; 2024 Jun; 242():105259. PubMed ID: 38936537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gym-Based Training Interventions for Anterior Cruciate Ligament Injury Reduction in American Football Players.
    Josse CM
    HSS J; 2023 Aug; 19(3):285-291. PubMed ID: 37435129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle prestimulation tunes velocity preflex in simulated perturbed hopping.
    Izzi F; Mo A; Schmitt S; Badri-Spröwitz A; Haeufle DFB
    Sci Rep; 2023 Mar; 13(1):4559. PubMed ID: 36941316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical instability of Hill-type muscle models.
    Yeo SH; Verheul J; Herzog W; Sueda S
    J R Soc Interface; 2023 Feb; 20(199):20220430. PubMed ID: 36722069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological Computation Increases From Lower- to Higher-Level of Biological Motor Control Hierarchy.
    Haeufle DFB; Stollenmaier K; Heinrich I; Schmitt S; Ghazi-Zahedi K
    Front Robot AI; 2020; 7():511265. PubMed ID: 33501299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Perturbed Human Arm Movements in a Neuro-Musculoskeletal Model to Investigate the Muscular Force Response.
    Stollenmaier K; Ilg W; Haeufle DFB
    Front Bioeng Biotechnol; 2020; 8():308. PubMed ID: 32373601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A geometry- and muscle-based control architecture for synthesising biological movement.
    Walter JR; Günther M; Haeufle DFB; Schmitt S
    Biol Cybern; 2021 Feb; 115(1):7-37. PubMed ID: 33590348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscles Reduce Neuronal Information Load: Quantification of Control Effort in Biological vs. Robotic Pointing and Walking.
    Haeufle DFB; Wochner I; Holzmüller D; Driess D; Günther M; Schmitt S
    Front Robot AI; 2020; 7():77. PubMed ID: 33501244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimality Principles in Human Point-to-Manifold Reaching Accounting for Muscle Dynamics.
    Wochner I; Driess D; Zimmermann H; Haeufle DFB; Toussaint M; Schmitt S
    Front Comput Neurosci; 2020; 14():38. PubMed ID: 32499691
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.