These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33501302)

  • 1. Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks.
    Veiga F; Akrour R; Peters J
    Front Robot AI; 2020; 7():521448. PubMed ID: 33501302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grip Stabilization through Independent Finger Tactile Feedback Control.
    Veiga F; Edin B; Peters J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback.
    Jara CA; Pomares J; Candelas FA; Torres F
    Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks.
    Melnik A; Lach L; Plappert M; Korthals T; Haschke R; Ritter H
    Front Robot AI; 2021; 8():538773. PubMed ID: 34268337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous supplementary tactile feedback can be applied (and then removed) to enhance precision manipulation.
    Cappello L; Alghilan W; Gabardi M; Leonardis D; Barsotti M; Frisoli A; Cipriani C
    J Neuroeng Rehabil; 2020 Aug; 17(1):120. PubMed ID: 32859222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-DexHands: Towards Human-Level Bimanual Dexterous Manipulation.
    Chen Y; Geng Y; Zhong F; Ji J; Jiang J; Lu Z; Dong H; Yang Y
    IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):2804-2818. PubMed ID: 38051620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots.
    Elangovan N; Chang CM; Gao G; Liarokapis M
    Front Robot AI; 2022; 9():808154. PubMed ID: 35546901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direction of Slip Detection for Adaptive Grasp Force Control with a Dexterous Robotic Hand.
    Abd MA; Gonzalez IJ; Colestock TC; Kent BA; Engeberg ED
    IEEE ASME Int Conf Adv Intell Mechatron; 2018 Jul; 2018():21-27. PubMed ID: 32042473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hierarchical sensorimotor control framework for human-in-the-loop robotic hands.
    Seminara L; Dosen S; Mastrogiovanni F; Bianchi M; Watt S; Beckerle P; Nanayakkara T; Drewing K; Moscatelli A; Klatzky RL; Loeb GE
    Sci Robot; 2023 May; 8(78):eadd5434. PubMed ID: 37196072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonprehensile Manipulation for Rapid Object Spinning via Multisensory Learning from Demonstration.
    Shin KJ; Jeon S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dexterous Manipulation for Multi-Fingered Robotic Hands With Reinforcement Learning: A Review.
    Yu C; Wang P
    Front Neurorobot; 2022; 16():861825. PubMed ID: 35548780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses.
    Rivera P; Valarezo Añazco E; Kim TS
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning tactile skills through curious exploration.
    Pape L; Oddo CM; Controzzi M; Cipriani C; Förster A; Carrozza MC; Schmidhuber J
    Front Neurorobot; 2012; 6():6. PubMed ID: 22837748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tactile Feedback Induces Reduced Grasping Force in Robot-Assisted Surgery.
    King CH; Culjat MO; Franco ML; Lewis CE; Dutson EP; Grundfest WS; Bisley JW
    IEEE Trans Haptics; 2009; 2(2):103-110. PubMed ID: 27788101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task.
    Edin BB; Ascari L; Beccai L; Roccella S; Cabibihan JJ; Carrozza MC
    Brain Res Bull; 2008 Apr; 75(6):785-95. PubMed ID: 18394525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Contour-following via Haptic Perception and Reinforcement Learning.
    Hellman RB; Tekin C; van der Schaar M; Santos VJ
    IEEE Trans Haptics; 2018; 11(1):61-72. PubMed ID: 28922126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.
    Panarese A; Edin BB; Vecchi F; Carrozza MC; Johansson RS
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):560-7. PubMed ID: 19457753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grasp Stability Prediction for a Dexterous Robotic Hand Combining Depth Vision and Haptic Bayesian Exploration.
    Siddiqui MS; Coppola C; Solak G; Jamone L
    Front Robot AI; 2021; 8():703869. PubMed ID: 34458325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning of Long-Horizon Sparse-Reward Robotic Manipulator Tasks With Base Controllers.
    Wang G; Xin M; Wu W; Liu Z; Wang H
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):4072-4081. PubMed ID: 36074886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.