These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33501304)
1. A Simple Yet Effective Whole-Body Locomotion Framework for Quadruped Robots. Raiola G; Mingo Hoffman E; Focchi M; Tsagarakis N; Semini C Front Robot AI; 2020; 7():528473. PubMed ID: 33501304 [TBL] [Abstract][Full Text] [Related]
2. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots. Hao Q; Wang Z; Wang J; Chen G Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028 [TBL] [Abstract][Full Text] [Related]
3. Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation. Zhu H; Wang D; Boyd N; Zhou Z; Ruan L; Zhang A; Ding N; Zhao Y; Luo J Front Robot AI; 2021; 8():724138. PubMed ID: 34765648 [TBL] [Abstract][Full Text] [Related]
4. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain. Song G; Ai Q; Tong H; Xu J; Zhu S Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613 [TBL] [Abstract][Full Text] [Related]
5. On Slip Detection for Quadruped Robots. Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952 [TBL] [Abstract][Full Text] [Related]
6. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs. Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645 [TBL] [Abstract][Full Text] [Related]
7. Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains. Shafiee M; Bellegarda G; Ijspeert A Nat Commun; 2024 Apr; 15(1):3073. PubMed ID: 38594288 [TBL] [Abstract][Full Text] [Related]
8. Generic Neural Locomotion Control Framework for Legged Robots. Thor M; Kulvicius T; Manoonpong P IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4013-4025. PubMed ID: 32833657 [TBL] [Abstract][Full Text] [Related]
9. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs. Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ Front Robot AI; 2018; 5():67. PubMed ID: 33500946 [TBL] [Abstract][Full Text] [Related]
10. In-plane gait planning for earthworm-like metameric robots using genetic algorithm. Zhan X; Xu J; Fang H Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958 [TBL] [Abstract][Full Text] [Related]
11. Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves. Pedro GDG; Bermudez G; Medeiros VS; Cruz Neto HJD; Barros LGD; Pessin G; Becker M; Freitas GM; Boaventura T Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931609 [TBL] [Abstract][Full Text] [Related]
13. Whole-body kinematic and dynamic modeling for quadruped robot under different gaits and mechanism topologies. Yan W; Pan Y; Che J; Yu J; Han Z PeerJ Comput Sci; 2021; 7():e821. PubMed ID: 35036536 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation. Cruz Ulloa C; Sánchez L; Del Cerro J; Barrientos A Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504177 [TBL] [Abstract][Full Text] [Related]
15. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot. Choi J Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686 [TBL] [Abstract][Full Text] [Related]
16. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot. Mahkam N; Özcan O Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650 [TBL] [Abstract][Full Text] [Related]
17. An insect-scale robot reveals the effects of different body dynamics regimes during open-loop running in feature-laden terrain. Schiebel PE; Shum J; Cerbone H; Wood RJ Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34874292 [TBL] [Abstract][Full Text] [Related]
18. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot. Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187 [TBL] [Abstract][Full Text] [Related]
19. Variable stiffness locomotion with guaranteed stability for quadruped robots traversing uneven terrains. Zhao X; Wu Y; You Y; Laurenzi A; Tsagarakis N Front Robot AI; 2022; 9():874290. PubMed ID: 36105760 [TBL] [Abstract][Full Text] [Related]
20. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion. Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]