BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33501305)

  • 1. Proposal and Evaluation of Visual Haptics for Manipulation of Remote Machine System.
    Haruna M; Ogino M; Koike-Akino T
    Front Robot AI; 2020; 7():529040. PubMed ID: 33501305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual-haptic integration, action and embodiment in virtual reality.
    McAnally K; Wallis G
    Psychol Res; 2022 Sep; 86(6):1847-1857. PubMed ID: 34709463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimanual Ultrasound Mid-Air Haptics for Virtual Reality Manipulation.
    Mulot L; Howard T; Gicquel G; Pacchierotti C; Marchal M
    IEEE Trans Vis Comput Graph; 2024 Jun; PP():. PubMed ID: 38905084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual delay affects force scaling and weight perception during object lifting in virtual reality.
    van Polanen V; Tibold R; Nuruki A; Davare M
    J Neurophysiol; 2019 Apr; 121(4):1398-1409. PubMed ID: 30673365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudo-haptics and self-haptics for freehand mid-air text entry in VR.
    Kim W; Xiong S
    Appl Ergon; 2022 Oct; 104():103819. PubMed ID: 35687993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of Pseudo-Haptics: Haptic Feedback Design and Application Proposals.
    Ujitoko Y; Ban Y
    IEEE Trans Haptics; 2021; 14(4):699-711. PubMed ID: 33950845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training.
    Maddahi Y; Zareinia K; Tomanek B; Sutherland GR
    Proc Inst Mech Eng H; 2018 Oct; ():954411918806934. PubMed ID: 30355029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low voltage-powered soft electromechanical stimulation patch for haptics feedback in human-machine interfaces.
    Qiu W; Zhong J; Jiang T; Li Z; Yao M; Shao Z; Cheng Q; Liang J; Wang D; Peng Y; He P; Bogy DB; Zhang M; Wang X; Lin L
    Biosens Bioelectron; 2021 Dec; 193():113616. PubMed ID: 34543862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haptic vs. Visual Neurofeedback for Brain Training: A Proof-of-Concept Study.
    Shabani F; Nisar S; Philamore H; Matsuno F
    IEEE Trans Haptics; 2021; 14(2):297-302. PubMed ID: 33945486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting Pseudo-Haptics for Psychomotor Skills Development in Online Teaching.
    Kapralos B; Quevedo A; Da Silva C; Peisachovich E; Collins KC; Kanev K; Dubrowski A
    Cureus; 2022 Mar; 14(3):e23664. PubMed ID: 35505750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptics to improve task performance in people with disabilities: A review of previous studies and a guide to future research with children with disabilities.
    Jafari N; Adams KD; Tavakoli M
    J Rehabil Assist Technol Eng; 2016; 3():2055668316668147. PubMed ID: 31186908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usability of an Immersive Augmented Reality Based Telerehabilitation System with Haptics (ARTESH) for Synchronous Remote Musculoskeletal Examination.
    Borresen A; Wolfe C; Lin CK; Tian Y; Raghuraman S; Nahrstedt K; Prabhakaran B; Annaswamy T
    Int J Telerehabil; 2019; 11(1):23-32. PubMed ID: 31341544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging Tendon Vibration to Enhance Pseudo-Haptic Perceptions in VR.
    Hirao Y; Amemiya T; Narumi T; Argelaguet F; Lecuyer A
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5861-5874. PubMed ID: 37647196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Virtual Objects With Hand-Tracking: The Effects of Visual Congruence and Mid-Air Haptics on Sense of Agency.
    Evangelou G; Georgiou O; Moore J
    IEEE Trans Haptics; 2023; 16(4):580-585. PubMed ID: 37155385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The visual and haptic contributions to hand perception.
    Coelho LA; Gonzalez CL
    Psychol Res; 2018 Sep; 82(5):866-875. PubMed ID: 28502021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics.
    Salazar SV; Pacchierotti C; de Tinguy X; Maciel A; Marchal M
    IEEE Trans Haptics; 2020; 13(1):167-174. PubMed ID: 31976907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When Tangibles Become Deformable: Studying Pseudo-Stiffness Perceptual Thresholds in a VR Grasping Task.
    Bouzbib E; Pacchierotti C; Lecuyer A
    IEEE Trans Vis Comput Graph; 2023 Mar; PP():. PubMed ID: 37028356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.